
CSE 6512 Randomization in Computing. Fall 2023

Exam #2 Solutions

1. Consider a k-uniform hypergraph H with less than 2k−1 edges. We will prove that it is 2-

colorable. We color every vertex of H independently red or blue, each with probability 1
2 .

The probability that the vertices of a given edge are all red or all blue is p = 2 × (1/2)k. If

H has < 2k−1 edges, the probability that there exists a monochromatic edge is < p 2k−1 = 1.

As a result, there is a non-zero probability that no edge is monochromatic. This means that

a proper coloring must exist.

2. Partition time into phases of length 2C(G) each. Let w be any node in the given graph

G(V,E). Probability that w is not visited in any phase is ≤
(
1
2

)
. Thus, probability that w

is not visited in k successive phases is ≤
(
1
2

)k
. Probability that there exists a node that has

not been visited in k phases is ≤ n
(
1
2

)k
. This probability will be ≤ n−α if k ≥ (α+ 1) log n.

Thus, independent of the starting node of a random walk, the time taken to visit each node

at least once is Õ(mn log n).

3. Each processor picks a random element of B and checks if this element is in A. Checking can

be done using binary search in O(log n) time. Call these two parallel steps a phase of the

algorithm. After every phase, the processors can use the concurrent write facility to check

(in O(1) time) if at least one of them has found a correct answer. Repeat this phase as many

times as it takes to identify a common element.

The probability of success in any phase for a single processor is ≥ 1
n5/12 since we know that

there are n7/12 common elements between A and B. Probability of failure in one phase,

for any specific processor, is ≤ 1 − 1
n5/12 . The probability that every processor fails in a

particular phase is ≤
(
1− 1

n5/12

)n5/12

. Therefore, probability of failing in k successive phases

is ≤
(
1− 1

n5/12

)kn5/12

≤ exp(−k). This probability will be ≤ n−α if k ≥ α log n. In other

words, the run time of the algorithm is Õ(log n).

4. Given two n × n matrices we can multiply them in O(log n) time using n3 CREW PRAM

processors as follows. Let A and B be the input matrices and let C = AB. Cij =∑n
k=1AikBkj . Assign n processors for each output value Cij . These processors can com-

pute Ai1B1j , Ai2B2j , . . . , AinBnj in O(1) time and add them using a prefix computation in

O(log n) time.

We can use this algorithm and the repeated squaring technique to compute Mk in

O(log n log k) time.

One of the processors can convert the integer k into binary in O(log k) time. Let this binary

number be bqbq−1 · · · b1b0, where q = ⌊log k⌋. The processors compute M2,M4, . . . ,M2q in

O(log n log k) time. Followed by this they compute Πbi=1M
2i . This also takes O(log n log k)

time.



5. We utilize the fact that we can search for an arbitrary element x in a sorted sequence of

length n in O(1) time using nϵ CREW PRAM processors, ϵ being any constant > 0. This

search is known as nϵ-ary search.

We assign nϵ processors to each of the keys in X. The processors associated with ki perform

a nϵ-ary search in Y to figure out the rank ri of ki in Y . As a result, we can compute the

global rank of each key of X. In a similar manner we can compute the global rank of each

key of Y . Once we know the ranks of the keys, we can output them in the order of their

ranks. The total run time is O(1).

6. Assume that we have n Common CRCW PRAM processors. Let X = k1, k2, . . . , kn and

Y = l1, l2, . . . , ln. We use two arrays A[1 : n] and B[1 : n]. Here is a constant time algorithm:

Step 1.

for 1 ≤ i ≤ n in parallel do

Processor i sets A[i] and B[i] to zero.

Step 2.

for 1 ≤ i ≤ n in parallel do

Processor i tries to write ki in A[ki];

Processor i tries to write li in B[li];

At the end of the above step we have collected all the distinct values of X in A and

all the distinct values of Y in B.

Step 3.

Processor 1 sets Result to No;

for 1 ≤ i ≤ n in parallel do

Processor i checks if A[i] = B[i] and A[i] ̸= 0. If so, it tries to set Result

to Y es.

Step 1 takes 2 units of time. Step 2 also takes 2 units of time. Step 3 takes 4 units of time.

Thus the entire algorithm takes O(1) time using n processors.


