
CSE 6512 Randomization in Computing. Fall 2023

Homework 2 Solutions

1. Let F = C1 ∧ C2 ∧ · · · ∧ Cm be the input CNF Boolean formula on n variables. Let wi be

the weight of Ci, for 1 ≤ i ≤ m, and W =
∑m

i=1wi. Let C be any clause in F with k literals.

Give a random assignment to the variables. Under this assignment, Prob.[C is not satisfied]

= 2−k. This means that Prob.[C is satisfied] = 1− 2−k ≥ 1
2 . As a result, the expected value

of the sum of the weights of the satisfied clauses is ≥ 1
2(w1+w2+ · · ·+wm). I.e., this expected

value is ≥ W
2 .

2. We are interested in the probability of getting farther than d positions to the right. Then the

probability of being at least d positions away from the origin will be twice that, because the

case of going to the left is symmetrical.

Let X = B(n, 1/2) be the event that at any one step we go to the right. If we go a steps

towards the right, and n−a towards the left, and at the end we are farther than d away from

the origin, towards the right, then a > (n+ d)/2.

Prob [X > (n+ d)/2] = Prob

[
X >

n

2

(
1 +

d

n

)]
ϵ =

d

n
⇒(Chernoff)

Prob [X > (n+ d)/2] < exp

(
−d2

2n

)

We want this ≤ n−α:

exp

(
−d2

2n

)
= n−α ⇒ d2

2n
= α lnn ⇒ d2 = 2nα lnn ⇒ d =

√
2nα lnn

In conclusion d = Õ
(√

n log n
)
. □

3. It was shown in class that the maximum of n elements can be found in O(1) time using n2

common CRCW PRAM processors.

Consider the case when ϵ = 1
2 . Divide the elements into groups fo size

√
n. Assign the first√

n elements to the first n processors and the second
√
n elements to the next n processors

and so on. The maximum element in each group can be found in O(1) time. At this stage,

we have
√
n elements and n

√
n processors. Hence, the maximum of these elements can be

found in O(1) time. Total time = O(1).

Next, consider the case when ϵ = 1
3 . Here, divide the elements into groups of size n1/3. Assign

the first n1/3 elements to the first n2/3 processors and the second n1/3 elements to the next

n2/3 processors and so on. The maximum element of each group can be found in O(1) time



and using n4/3 prceossors the maximum of these maximum elements can be found in O(1)

time.

For the general case, partition the input into groups with nϵ elements in each group. Find

the maximum of each group assigning n2ϵ processors to each group. This takes O(1) time.

Now the problem reduces to finding the maximum of n1−ϵ elements. Again, partition the

elements with nϵ elements in each group and find the maximum of each group. There will be

only n1−2ϵ elements left. Proceed in a similar fashion until the number of remaining elements

is ≤
√
n. The maximum of these can be found in O(1) time. Clearly, the run time of this

algorithm is O(1/ϵ). This will be a constant if ϵ is a constant.

4. Let X = k1, k2, . . . , kn. Assume without loss of generality that the keys are distinct. Note

that the right neighbor of any input key ki is nothing but the minimum among all the input

keys that are greater than ki. Key ki is assigned a group Gi of n processors, 1 ≤ i ≤ n. The

processors associated with ki use an array Ai[1 : n]. This array is initialized with all ∞’s.

Processor j of group Gi writes kj in Ai[j] if kj > ki. After this write step that takes one

parallel step, processors in Gi find the minimum of Ai[1], Ai[2], . . . , Ai[n] in Õ(1) time. This

minimum is the right neighbor of ki.

5. We will show that we can stably sort n integers in the range [1,
√
n] in O(

√
n) time using

√
n

CREW PRAM processors. Using the idea of radix sorting it will follow that we can sort n

integers in the range [1, nc] (for any constant c) in O(
√
n) time using

√
n processors.

Let X = k1, k1, . . . , kn be the input sequence. Assign
√
n keys per processor. In partic-

ular, the first processor gets the keys k1, k2, . . . , k√n; the second processor gets the keys

k√n+1, k
√
n+2, . . . , k2

√
n; and so on.

(a) Each processor sorts its keys using bucket sorting. This takes O(
√
n) time. Let Ni,j be

the number of keys of value j that processor i has, for 1 ≤ i, j ≤
√
n.

(b) All the
√
n processors perform a prefix sums computation on N1,1, N2,1, . . . , N√

n,1,

N1,2, N2,2, . . . , N√
n,2, · · · , N1,

√
n, N2,

√
n, . . . , N

√
n,
√
n.

(c) Each processor now uses these prefix sums values to output its keys in the sorted order.

Since each of the above three steps takes O(
√
n) time, the run time of the algorithm is O(

√
n).

6. Assume that A and B are in common memory in successive cells. In particular, assume that

A is in M [1 : n] and B is in M [n+ 1 : m+ n].

(a) Sort B, i.e., sort M [n+1 : n+m]. This can be done in Õ(logm) time using m arbitrary

CRCW PRAM processors.

(b) Assign one processor per element of A. Processor i performs a binary search in B[n+1 :

n+m] to check if M [i] is in B, for 1 ≤ i ≤ n. This binary search takes O(logm) time.

(c) In this step, we’ll use an array Q[1 : 2m]. Each element of A that is also in B will be

placed in a unique cell of Q. Each element of A is assigned one processor. If an element

of A is in A ∩ B, the corresponding processor will try to place the element in Q. If an



element of A is not in A ∩ B, the corresponding processor goes to sleep. If a processor

π has an element that has to be placed in Q, π proceeds in rounds. It takes as many

rounds as needed to successfully place its key.

In a round, π picks a random cell in Q; If this cell is occupied, it waits for the next

round; If this cell is empty, it tries to write its key in the cell; Processor π reads from

this cell to check if its key is there; If so, the processor goes to sleep; If not, it moves to

the next round.

Probability that π succeeds in any round is ≥ 1/2. Thus the number of rounds needed

to place π’key successfully in Q is Õ(logm), for any processor π.

(d) Use a prefix computation to compress the array Q[1 : 2m] (and get rid of the empty

cells). This can be done in O(logm) time using 2m
logm ≤ n processors.

The compressed array Q is A ∩B.

We could do steps (c) and (d) in a different way as follows. We use an array Q[1 : m] initialized

to all zeros. Each element of A is assigned a processor. Processor i goes to sleep if ki is not

in A ∩ B, 1 ≤ i ≤ n. Otherwise, processor i writes a 1 in Q[j] if M [i] = M [n + j]. After

this parallel write step, we assign one processor per element of B. These processors empty

the cells of B that are not in A ∩ B. A prefix sums computation is done on Q in O(logm)

time using m
logm processors. These prefix sums are used to write the elements of A ∩ B in

successive cells in common memory.


