CSE 6512 Randomization in Computing. Fall 2023

Homework 2 Solutions

1. Let $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be the input CNF Boolean formula on n variables. Let w_{i} be the weight of C_{i}, for $1 \leq i \leq m$, and $W=\sum_{i=1}^{m} w_{i}$. Let C be any clause in F with k literals. Give a random assignment to the variables. Under this assignment, Prob.[C is not satisfied] $=2^{-k}$. This means that Prob. $[C$ is satisfied $]=1-2^{-k} \geq \frac{1}{2}$. As a result, the expected value of the sum of the weights of the satisfied clauses is $\geq \frac{1}{2}\left(w_{1}+w_{2}+\cdots+w_{m}\right)$. I.e., this expected value is $\geq \frac{W}{2}$.
2. We are interested in the probability of getting farther than d positions to the right. Then the probability of being at least d positions away from the origin will be twice that, because the case of going to the left is symmetrical.
Let $X=B(n, 1 / 2)$ be the event that at any one step we go to the right. If we go a steps towards the right, and $n-a$ towards the left, and at the end we are farther than d away from the origin, towards the right, then $a>(n+d) / 2$.

$$
\begin{aligned}
\operatorname{Prob}[X>(n+d) / 2] & =\operatorname{Prob}\left[X>\frac{n}{2}\left(1+\frac{d}{n}\right)\right] \\
\epsilon & =\frac{d}{n} \Rightarrow{ }^{(\text {Chernoff })} \\
\operatorname{Prob}[X>(n+d) / 2] & <\exp \left(\frac{-d^{2}}{2 n}\right)
\end{aligned}
$$

We want this $\leq n^{-\alpha}$:

$$
\exp \left(\frac{-d^{2}}{2 n}\right)=n^{-\alpha} \Rightarrow \frac{d^{2}}{2 n}=\alpha \ln n \Rightarrow d^{2}=2 n \alpha \ln n \Rightarrow d=\sqrt{2 n \alpha \ln n}
$$

In conclusion $d=\tilde{O}(\sqrt{n \log n})$.
3. It was shown in class that the maximum of n elements can be found in $O(1)$ time using n^{2} common CRCW PRAM processors.
Consider the case when $\epsilon=\frac{1}{2}$. Divide the elements into groups fo size \sqrt{n}. Assign the first \sqrt{n} elements to the first n processors and the second \sqrt{n} elements to the next n processors and so on. The maximum element in each group can be found in $O(1)$ time. At this stage, we have \sqrt{n} elements and $n \sqrt{n}$ processors. Hence, the maximum of these elements can be found in $O(1)$ time. Total time $=O(1)$.
Next, consider the case when $\epsilon=\frac{1}{3}$. Here, divide the elements into groups of size $n^{1 / 3}$. Assign the first $n^{1 / 3}$ elements to the first $n^{2 / 3}$ processors and the second $n^{1 / 3}$ elements to the next $n^{2 / 3}$ processors and so on. The maximum element of each group can be found in $O(1)$ time
and using $n^{4 / 3}$ prceossors the maximum of these maximum elements can be found in $O(1)$ time.

For the general case, partition the input into groups with n^{ϵ} elements in each group. Find the maximum of each group assigning $n^{2 \epsilon}$ processors to each group. This takes $O(1)$ time. Now the problem reduces to finding the maximum of $n^{1-\epsilon}$ elements. Again, partition the elements with n^{ϵ} elements in each group and find the maximum of each group. There will be only $n^{1-2 \epsilon}$ elements left. Proceed in a similar fashion until the number of remaining elements is $\leq \sqrt{n}$. The maximum of these can be found in $O(1)$ time. Clearly, the run time of this algorithm is $O(1 / \epsilon)$. This will be a constant if ϵ is a constant.
4. Let $X=k_{1}, k_{2}, \ldots, k_{n}$. Assume without loss of generality that the keys are distinct. Note that the right neighbor of any input key k_{i} is nothing but the minimum among all the input keys that are greater than k_{i}. Key k_{i} is assigned a group G_{i} of n processors, $1 \leq i \leq n$. The processors associated with k_{i} use an array $A_{i}[1: n]$. This array is initialized with all ∞ 's. Processor j of group G_{i} writes k_{j} in $A_{i}[j]$ if $k_{j}>k_{i}$. After this write step that takes one parallel step, processors in G_{i} find the minimum of $A_{i}[1], A_{i}[2], \ldots, A_{i}[n]$ in $\widetilde{O}(1)$ time. This minimum is the right neighbor of k_{i}.
5. We will show that we can stably sort n integers in the range $[1, \sqrt{n}]$ in $O(\sqrt{n})$ time using \sqrt{n} CREW PRAM processors. Using the idea of radix sorting it will follow that we can sort n integers in the range $\left[1, n^{c}\right]$ (for any constant c) in $O(\sqrt{n})$ time using \sqrt{n} processors.
Let $X=k_{1}, k_{1}, \ldots, k_{n}$ be the input sequence. Assign \sqrt{n} keys per processor. In particular, the first processor gets the keys $k_{1}, k_{2}, \ldots, k_{\sqrt{n}}$; the second processor gets the keys $k_{\sqrt{n}+1}, k_{\sqrt{n}+2}, \ldots, k_{2 \sqrt{n}}$; and so on.
(a) Each processor sorts its keys using bucket sorting. This takes $O(\sqrt{n})$ time. Let $N_{i, j}$ be the number of keys of value j that processor i has, for $1 \leq i, j \leq \sqrt{n}$.
(b) All the \sqrt{n} processors perform a prefix sums computation on $N_{1,1}, N_{2,1}, \ldots, N_{\sqrt{n}, 1}$, $N_{1,2}, N_{2,2}, \ldots, N_{\sqrt{n}, 2}, \cdots, N_{1, \sqrt{n}}, N_{2, \sqrt{n}}, \ldots, N_{\sqrt{n}, \sqrt{n}}$.
(c) Each processor now uses these prefix sums values to output its keys in the sorted order.

Since each of the above three steps takes $O(\sqrt{n})$ time, the run time of the algorithm is $O(\sqrt{n})$.
6. Assume that A and B are in common memory in successive cells. In particular, assume that A is in $M[1: n]$ and B is in $M[n+1: m+n]$.
(a) Sort B, i.e., sort $M[n+1: n+m]$. This can be done in $\widetilde{O}(\log m)$ time using m arbitrary CRCW PRAM processors.
(b) Assign one processor per element of A. Processor i performs a binary search in $B[n+1$: $n+m]$ to check if $M[i]$ is in B, for $1 \leq i \leq n$. This binary search takes $O(\log m)$ time.
(c) In this step, we'll use an array $Q[1: 2 m]$. Each element of A that is also in B will be placed in a unique cell of Q. Each element of A is assigned one processor. If an element of A is in $A \cap B$, the corresponding processor will try to place the element in Q. If an
element of A is not in $A \cap B$, the corresponding processor goes to sleep. If a processor π has an element that has to be placed in Q, π proceeds in rounds. It takes as many rounds as needed to successfully place its key.
In a round, π picks a random cell in Q; If this cell is occupied, it waits for the next round; If this cell is empty, it tries to write its key in the cell; Processor π reads from this cell to check if its key is there; If so, the processor goes to sleep; If not, it moves to the next round.
Probability that π succeeds in any round is $\geq 1 / 2$. Thus the number of rounds needed to place π 'key successfully in Q is $\widetilde{O}(\log m)$, for any processor π.
(d) Use a prefix computation to compress the array $Q[1: 2 m$ (and get rid of the empty cells). This can be done in $O(\log m)$ time using $\frac{2 m}{\log m} \leq n$ processors.

The compressed array Q is $A \cap B$.
We could do steps (c) and (d) in a different way as follows. We use an array $Q[1: m]$ initialized to all zeros. Each element of A is assigned a processor. Processor i goes to sleep if k_{i} is not in $A \cap B, 1 \leq i \leq n$. Otherwise, processor i writes a 1 in $Q[j]$ if $M[i]=M[n+j]$. After this parallel write step, we assign one processor per element of B. These processors empty the cells of B that are not in $A \cap B$. A prefix sums computation is done on Q in $O(\log m)$ time using $\frac{m}{\log m}$ processors. These prefix sums are used to write the elements of $A \cap B$ in successive cells in common memory.

