CSE 6512 Randomization in Computing. Fall 2023
Homework 2 Solutions

1. Let F = Ci ACoy A\ --- ANCy, be the input CNF Boolean formula on n variables. Let w; be
the weight of C;, for 1 <¢ < m, and W = Z:’;l w;. Let C' be any clause in F' with k literals.
Give a random assignment to the variables. Under this assignment, Prob.[C' is not satisfied]
= 2%, This means that Prob.[C is satisfied] = 1 —27% > % As a result, the expected value
of the sum of the weights of the satisfied clauses is > %(wl +wa+---+wp). Le., this expected
value is > %

2. We are interested in the probability of getting farther than d positions to the right. Then the
probability of being at least d positions away from the origin will be twice that, because the
case of going to the left is symmetrical.

Let X = B(n,1/2) be the event that at any one step we go to the right. If we go a steps
towards the right, and n — a towards the left, and at the end we are farther than d away from
the origin, towards the right, then a > (n + d)/2.

Prob[X > (n+d)/2] = Prob [X ~ g (1 " fL)]

€ — é :>(Chernoff)
n

Prox > )2 < exp (55

We want this < n™%:

—d2 d2
exp (2> =n %= o = alnn = d?> =2nalnn = d = v2nalnn
n n

In conclusion d = O (\/nlog n) (]

3. It was shown in class that the maximum of n elements can be found in O(1) time using n?
common CRCW PRAM processors.

Consider the case when ¢ = % Divide the elements into groups fo size y/n. Assign the first
v/n elements to the first n processors and the second /n elements to the next n processors
and so on. The maximum element in each group can be found in O(1) time. At this stage,
we have /n elements and n./n processors. Hence, the maximum of these elements can be
found in O(1) time. Total time = O(1).

1/3

Next, consider the case when € = % Here, divide the elements into groups of size n'/°. Assign

1/3

the first n!/3 elements to the first n2/3 processors and the second n'/? elements to the next

n?/3 processors and so on. The maximum element of each group can be found in O(1) time



and using n*/? prceossors the maximum of these maximum elements can be found in O(1)

time.

For the general case, partition the input into groups with n® elements in each group. Find
the maximum of each group assigning n?¢ processors to each group. This takes O(1) time.

1—e

Now the problem reduces to finding the maximum of n elements. Again, partition the

elements with n¢ elements in each group and find the maximum of each group. There will be

1=2¢ elements left. Proceed in a similar fashion until the number of remaining elements

only n
is < y/n. The maximum of these can be found in O(1) time. Clearly, the run time of this

algorithm is O(1/¢€). This will be a constant if € is a constant.

4. Let X = k1,ko, ..., ky. Assume without loss of generality that the keys are distinct. Note
that the right neighbor of any input key k; is nothing but the minimum among all the input
keys that are greater than k;. Key k; is assigned a group G; of n processors, 1 < i < n. The
processors associated with k; use an array A;[1 : n]. This array is initialized with all co’s.
Processor j of group G; writes k;j in A;[j] if k; > k;. After this write step that takes one
parallel step, processors in G; find the minimum of A;[1], A;[2],.. ., A;[n] in O(1) time. This
minimum is the right neighbor of k;.

5. We will show that we can stably sort n integers in the range [1,/n] in O(y/n) time using /n
CREW PRAM processors. Using the idea of radix sorting it will follow that we can sort n
integers in the range [1,n¢ (for any constant ¢) in O(y/n) time using \/n processors.

Let X = ky,k1,...,k, be the input sequence. Assign /n keys per processor. In partic-
ular, the first processor gets the keys ki, k2,...,k 5; the second processor gets the keys
k‘\/ﬁ+1,k\/ﬁ+2,...,k2\/ﬁ; and so on.
(a) Each processor sorts its keys using bucket sorting. This takes O(y/n) time. Let N; ; be
the number of keys of value j that processor i has, for 1 <i,j < /n.
(b) All the \/n processors perform a prefix sums computation on Ni1,Noji,..., N 5,
NLQ,NQ,Q,...,N\/EQ’ cee Nl,\/EaNZ\/E""’N\/ﬁ,\/ﬁ‘

(c) Each processor now uses these prefix sums values to output its keys in the sorted order.
Since each of the above three steps takes O(y/n) time, the run time of the algorithm is O(y/n).

6. Assume that A and B are in common memory in successive cells. In particular, assume that
Aisin M[1:n] and Bisin M[n+1:m+n].

(a) Sort B, i.e., sort M[n+1: n+m]. This can be done in O(logm) time using m arbitrary
CRCW PRAM processors.

(b) Assign one processor per element of A. Processor i performs a binary search in B[n+1 :
n + m] to check if M[i] is in B, for 1 <14 < n. This binary search takes O(logm) time.

(c) In this step, we’ll use an array Q[1 : 2m]. Each element of A that is also in B will be
placed in a unique cell of (). Each element of A is assigned one processor. If an element
of A is in AN B, the corresponding processor will try to place the element in Q). If an



(d)

element of A is not in A N B, the corresponding processor goes to sleep. If a processor
7 has an element that has to be placed in @), m proceeds in rounds. It takes as many
rounds as needed to successfully place its key.

In a round, 7 picks a random cell in @); If this cell is occupied, it waits for the next
round; If this cell is empty, it tries to write its key in the cell; Processor 7= reads from
this cell to check if its key is there; If so, the processor goes to sleep; If not, it moves to
the next round.

Probability that m succeeds in any round is > 1/2. Thus the number of rounds needed
to place m’key successfully in @ is 6(log m), for any processor .

Use a prefix computation to compress the array Q[1 : 2m| (and get rid of the empty

2m
logm

cells). This can be done in O(logm) time using < m processors.

The compressed array @) is AN B.

We could do steps (c) and (d) in a different way as follows. We use an array Q[1 : m] initialized

to all zeros. Each element of A is assigned a processor. Processor i goes to sleep if k; is not
in AN B, 1 < i < n. Otherwise, processor i writes a 1 in Q[j] if M[i] = M[n + j]. After
this parallel write step, we assign one processor per element of B. These processors empty

the cells of B that are not in AN B. A prefix sums computation is done on @ in O(logm)

time using

m
logm

processors. These prefix sums are used to write the elements of AN B in

successive cells in common memory.



