Name: \qquad

CSE 6512 Randomization in Computing

Exam II (model); Fall 2023

Note: You are supposed to give proofs to the time and processor bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. (16 points) Let $G(V, E)$ be a complete graph on n vertices. A tournament $T(V, E)$ is nothing but an orientation of the edges of $G(V, E)$. Specifically, for any two vertices u and v in V, exactly one of the directed edges (u, v) and (v, u) is present in $T(V, E)$. A Hamiltonian path in a tournament is a directed path passing through all the vertices. Show that there is a tournament on n vertices that has at least $\frac{n!}{2^{n-1}}$ Hamiltonian paths.
2. (17 points) Input are k sorted sequences $X_{1}, X_{2}, \ldots, X_{k}$ such that $\sum_{i=1}^{k}\left|X_{i}\right|=n$. The problem is to merge these k sequences. Show how to solve this problem in $O(\log k \log \log n)$ time using n CREW PRAM processors.
3. (17 points) Input are k sets represented as (not necessarily sorted) sequences each of length n. Keys in these sequences are integers in the range $\left[1, n \log ^{10} n\right]$. Show how to compute the intersection of these sets in $\widetilde{O}(\log n \log k)$ time. You can use up to $\frac{n k}{\log n}$ Arbitrary CRCW PRAM processors.

Extra credit: Show that the above problem can be solved in time $\widetilde{O}\left(\min \left\{\log n \log k, \log n \log \log n+\frac{\log n}{\log \log n} \log k\right\}\right)$ using $\frac{n k}{\log n}$ Arbitrary CRCW PRAM processors.
4. (17 points) Input is an array $A[1: n]$ of arbitrary real numbers. The problem is to find an element of A whose rank in A is in the interval $\left[\frac{3}{8} n, \frac{5}{8} n\right]$. Present a Monte Carlo algorithm to solve this problem that runs in $\widetilde{O}(\log n)$ time. You can use upto $n^{1 / 4}$ CREW PRAM processors. Prove that the output of your algorithm will be correct with high probability.
5. (17 points) Let A and B be two $n \times n$ matrices of arbitrary real numbers. The tropical product of A and B is a matrix C such that $C[i, j]=\min _{k=1}^{n} A[i, k]+B[k, j]$, for $1 \leq i, j \leq n$.
Present a Las Vegas algorithm that takes as input two $n \times n$ matrices and computes the tropical product of these in $\widetilde{O}(1)$ time. You can use upto n^{3} arbitrary CRCW PRAM processors.
6. (16 points) Input are a sequence X of n arbitrary real numbers (not necessarily in sorted order) and another real number r. The problem is to check if there are two elements a and b of X whose sum is r. Present a $\widetilde{O}(\log n)$-time algorithm for this problem. You can use up to n arbitrary CRCW PRAM processors. Assume that the numbers in X are distinct.

