
CSE 6512 Randomization in Computing. Fall 2023

Exam #2 (model) Solutions

1. Let us calculate the expected number of Hamiltonian paths in a random tournament T (V,E)

where every edge of G(V,E) has a random orientation, chosen independently with probability
1
2 .

Let π be a random permutation of {1, . . . , n}. What is the probability that the sequence

of nodes π(1), π(2), . . . , π(n) corresponds to a Hamiltonian path? This sequence will be

Hamiltonian path if (π(i), π(i+ 1)) is a directed edge in the tournament, for 1 ≤ i ≤ (n− 1).

The probability of this is 1
2n−1 . As a result, it follows that the expected number of Hamiltonian

paths in a random tournament is n!
2n−1 . Therefore, there exists a tournament that has at least

n!
2n−1 Hamiltonian paths.

2. Here we use the fact that two sorted sequences of length N can be merged in

O(log logN) time using N CREW PRAM processors. We recursively merge the sequences

X1, X2, . . . , X(k/2) to get Y1 using
∑(k/2)

i=1 |Xi| processors. At the same time we recursively

mergeX(k/2)+1, X(k/2)+2, . . . , Xk to get Y2 using
∑k

i=(k/2)+1 |Xi| processors. The total number

of processors used is clearly n.

Followed by the above reursive steps, we merge Y1 and Y2 using n processors. This merging

will take O(log log n) time. Let T (k) be the time needed to merge k sorted sequences using

n processors. Then, we have:

T (k) = T (k/2) +O(log log n).

The above recurrence relation can be solved to get: T (k) = O(log k log log n).

3. In this problem we use the fact that we can sort a sequence of n integers in the range

[1, n logc n] in Õ(log n) time using n
logn Arbitrary CRCW PRAM processors, where c is any

constant.

Let X1, X2, . . . , Xk be the input sequences. We start by sorting each of these sequences using

the above algorithm. This will take Õ(log n) time using nk
logn processors. Consider a complete

binary tree where each leaf has one of these sorted sequences. We traverse this tree level by

level starting at the level immediately above the leaves. At any node in the tree we compute

the intersection of the two children.

We can compute the intersection of two sorted sequences of length at most q each (where

q ≤ n) using q
logn processors in Õ(log n) time. This means that the computations in each

level of the tree can be computed in Õ(log n) time using nk
logn processors.

As a result, the entire algorithm runs in time Õ(log n log k) using nk
logn processors.

Extra Credit: There are two cases to consider.

Case 1: k ≤ log n: In this case use the previous algorithm.

Case 2: k > log n: Note that the number of nodes in any level of the tree is one half of the

number of nodes in the level below. We use the above technique of computing intersections

for the bottom 2 log log n levels. The number of nodes in the 2 log log nth level from the

bottom is n
log2 n

. From this level on, use the Õ
(

logn
log logn

)
time algorithm for integer sorting

(and hence intersections). The total time is Õ
(
log n log log n+ logn

log logn log k
)
. Number of

processors needed at any level of the tree is no more than nk
logn .

4. Here is an algorithm: Pick a random sample S from A of size n1/4. This can be done in O(1)

time using n1/4 processors. Find the median x of S and output this element. We can find

x, for example, using the optimal randomized selection algorithm we have discussed in class.

Clearly, this algorithm runs in Õ(log n) time.

Analysis: Let s = |S| = n1/4. Using one of the sampling lemmas we have stated

in class, if r = rank(x,A), then, Pr
[
|r − s

2
n
s | >

n√
s

√
4α log n

]
≤ n−α. In other words,

Pr
[
|r − n

2 | > n7/8
√
4α log n

]
≤ n−α. This implies that rank(x,A) lies in the interval [38n,

5
8n]

with high probability.

5. Consider the computation of C[i, j], for any 1 ≤ i, j ≤ n. Using n processors we can compute

the following n elements in O(1) time: A[i, 1] + B[1, j], A[i, 2] + B[2, j], . . . , A[i, n] + B[n, j].

Subsequently, we can compute the minimum of these n elements in Õ(1) time using n pro-

cessors, using one of the selection algorithms we have discussed in class.

Thus, we can compute the tropical product of two matrices in Õ(1) time using n3 arbitrary

CRCW PRAM processors.

6. Processor 1 sets Result to false. We first sort X using the sorting algorithm discussed in class

in Õ(log n) time using n arbitrary CRCW PRAM processors. Followed by this, we assign one

input key per processor. In particular, processor i gets ki (for 1 ≤ i ≤ n). For 1 ≤ i ≤ n, in

parallel, processor i performs a binary search in X to see if (r−ki) ∈ X; if so processor i tries

to write true in Result. This step takes O(log n) time and at the end of this step, Result will

have the correct answer. Clearly, the total run time of the algorithm is Õ(log n).

