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Random walks on graphs: A random walk on a graph refers to starting from a node, moving
to a random neighbor of that node, from there moving to a random neighbor, and so on. Cu(G)
refers to the expected length of a walk that starts at u and visits each node of G at least once. The
cover time C(G) = maxuCu(G). Any connected, undirected, and non-bipartite graph G induces a
Markov chain MG whose states are the vertices of G. For any two vertices u, v ∈ V , Puv = 1/du if
(u, v) ∈ E; Puv = 0 if (u, v) ̸∈ E, du being the degree of u. Using this fact and known results on
Markov chains, we showed that C(G) ≤ 2|E|(|V | − 1).

The probabilistic method: Two ideas are prevalent: 1) Any random variable takes on a value
that is at least as much as the mean; Also, it takes on a value that is at most the mean. 2) If the
probability that a randomly chosen object from a universe satisfies a property P is positive, then
there must be at least one object in the universe that satisfies P .

Using the above ideas we proved the following: 1) If G(V,E) is any undirected graph, then there
exists a partition of V into A and B such that the number of cross edges from A to B is ≥ |E|/2;
2) For any set of m clauses there exists a truth assignment that satisfies at least m/2 clauses; 3)
Let Cn be a complete graph on n vertices. Let R(k, t) be the minimum value of n such that if
the edges of Cn are colored with red and blue, then for each such coloring there exists either a red

clique of size k or a blue clique of size t. If
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)
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2) < 1, then R(k, k) > n; 4) There exists an

(n, 18, 1/3, 2) OR-concentrator, for all n larger than some constant; 5) A tournament on n nodes is
a complete graph G(V,E). Each node is a player. < i, j >∈ E if player i has defeated player j. We
say that the tournament has property Pk if for every subset of k players there exists another player
who has defeated all the k players. For every k there is a finite tournament with property Pk; 6)
Let F = C1 ∧ C2 ∧ · · · ∧ Cm be a CNF Boolean formula where each clause has exactly k literals,
k being some constant. Also, assume that each of the n variables occurs in at most 2k/10 clauses.
Then, we used Lovász local lemma to show that the probability that a random assignment satisfies
F is greater than zero.

PARALLEL ALGORITHMS. In a PRAM (Parallel Random Access Machine), processors com-
municate by writing into and reading from memory cells that are accessible to all. Depending on
how read and write conflicts are resolved, there are variants of the PRAM. In an Exclusive Read
Exclusive Write (EREW) PRAM, no concuurent reads or concurrent writes are permitted. In a
Concurrent Read Exclusive Write (CREW) PRAM, concurrent reads are permitted but concurrent
writes are prohibited. In a Concurrent Read Concurrent Write (CRCW) PRAM both concurrent
reads and concurrent writes are allowed. Concurrent writes can be resolved in many ways. In a
Common CRCW PRAM, concurrent writes are allowed only if the conflicting processors have the
same message to write (into the same cell at the same time). In an Arbitrary CRCW PRAM, an
arbitrary processor gets to write in cases of conflicts. In a Priority CRCW PRAM, write conflicts
are resolved on the basis of priorities (assigned to the processors at the beginning).



We presented a Common CRCW PRAM algorithm for finding the Boolean AND of n given bits
in O(1) time. We used n processors. As a corollary we gave an algorithm for finding the minimum
(or maximum) of n given numbers in O(1) time using n2 Common CRCW PRAM processors. The
following results were also proven: 1) The maximum of n arbitrary numbers can be found in Õ(1)
time using n CRCW PRAM processors; and 2) The maximum of n elements can be found in O(1)
time using n CRCW PRAM processors, when each element is an integer in the range [1, nc], c being
any constant.

We also discussed a CREW PRAM algorithm for the prefix computation problem. This algo-
rithm uses n processors and runs in O(log n) time on any input of n elements. (For the prefix
computation problem the input is a sequence of elements from some domain Σ: k1, k2, . . . , kn and
the output is another sequence: k1, k1 ⊕ k2, . . . , k1 ⊕ k2 ⊕ k3 ⊕ · · · ⊕ kn, where ⊕ is any binary
associative and unit-time computable operation on Σ.)

We also proved the following theorems: 1) Prefix computation on n elements can be done using
n

logn
CREW PRAM processors in O(log n) time; 2) If a parallel algorithm runs in time T on a

P -processor PRAM, it can be simulated on a P ′-processor PRAM in time O(PT/P ′) as long as
P ′ ≤ P ; 3) The selection problem on n elements can be solved in Õ(log n) time using n

logn
CREW

PRAM processors; 4) We can sort n given arbitrary elements in Õ(log n) time given n arbitrary
CRCW PRAM processors; 5) We can sort n integers in the range [1, (log n)c] in O(log n) time
using n

logn
CREW PRAM processors, c being any constant; 6) We can sort n integers in the range

[1, n(log n)c] in Õ(log n) time using n
logn

arbitrary CRCW PRAM processors, c being any constant;

and 7) We can sort n arbitrary elements in Õ
(

logn
log logn

)
time using n(log n)ϵ arbitrary CRCW PRAM

processors, ϵ being any constant > 0.

Chernoff Bounds. These bounds can be used to closely approximate the tail ends of a binomial
distribution.

A Bernoulli trial has two outcomes namely success and failure, the probability of success being
p. A binomial distribution with parameters n and p, denoted as B(n, p), is the number of successes
in n independent Bernoulli trials.

Let X be a binomial random variable whose distribution is B(n, p). If m is any integer > np,
then the following are true:

Prob.[X > m] ≤
(
np

m

)m

em−np; (1)

Prob.[X > (1 + δ)np] ≤ e−δ2np/3; and (2)

Prob.[X < (1− δ)np] ≤ e−δ2np/2 (3)

for any 0 < δ < 1.


