\qquad

CSE 6512 Randomization in Computing

Exam I; October 24, 2023

Note: You are supposed to give proofs to the time bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. (16 points) Input is an array $A[1: n]$ of arbitrary real numbers. The array could only be of one of the following two types: 1) Type I: A has $\frac{n}{3}$ elements that are in the range $[1,2)$, another $\frac{n}{3}$ elements in the range [2,3), and another $\frac{n}{3}$ elements in the range [3, 4]; or 2) Type II: A has $\frac{n}{3}$ elements that are in the range $[2,3)$, another $\frac{n}{3}$ elements in the range [3, 4], and another $\frac{n}{3}$ elements in the range $(4,5]$. Present a Las Vegas algorithm that determines the type of the array in $\widetilde{O}(\log n)$ time.
2. (17 points) Input is a sequence X of n arbitrary real numbers and an integer $i, 1 \leq i \leq n$. The problem is to output an element of X whose rank in X is in the interval $i \pm \widetilde{O}\left(n^{3 / 4}\right)$. Present a Monte Carlo algorithm for this problem that takes $O\left(n^{2 / 3}\right)$ time. Prove the correctness of your algorithm.
3. (17 points) Input are $n \times n$ matrices $A_{1}, A_{2}, \ldots, A_{k}, C$. The problem is to check if C is the inverse of $\prod_{i=1}^{k} A_{i}$. Present a Monte Carlo algorithm to solve this problem in $O\left(n^{2} k\right)$ time. Show that the output of your algorithm will be correct with a high probability.
4. (16 points) Input are polynomials $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$, the degree of $f_{i}(x)$ being $d_{i}, 1 \leq$ $i \leq k$, such that $\sum_{i=1}^{k} d_{i}=n$. Let $F(x)=\prod_{i=1}^{k} f_{i}(x)$. Input are also the polynomials $g_{1}(x), g_{2}(x), \ldots, g_{\ell}(x)$, the degree of $g_{i}(x)$ being $e_{i}, 1 \leq i \leq \ell$, such that $\sum_{i=1}^{\ell} e_{i}=n$. Let $G(x)=\Pi_{i=1}^{\ell} g_{i}(x)$. The problem is to check if $F(x)=G(x)$. Present a Monte Carlo algorithm to solve this problem that runs in $O(n)$ time. Show that the output of your algorithm will be correct with a high probability.
5. (17 points) We have shown in class that a random skip list with n elements has a height of $\widetilde{O}(\log n)$. Prove that the space needed to store a random skip list with n elements in $\widetilde{O}(n)$.
6. (17 points) Let $M=\{0,1, \ldots, m-1\}$ and $N=\{0,1, \ldots, n-1\}$, with $m \geq n$. A family H of hash functions from M into N is said to be strongly 2-universal if for all $x_{1}, x_{2} \in M, x_{1} \neq x_{2}$, and any $y_{1}, y_{2} \in N$, and h chosen uniformly randomly from H, $\operatorname{Prob} .\left[h\left(x_{1}\right)=y_{1}\right.$ and $h\left(x_{2}\right)=$ $\left.y_{2}\right]=\frac{1}{n^{2}}$. Consider the case where $m=n=p$, where p is a prime number. Show that the following hash family is strongly 2-universal: $H=\left\{h_{a, b}(x)=((a x+b) \bmod p) \bmod n: a, b \in\right.$ $\left.\mathcal{Z}_{p}\right\}$.
