CSE 6512 Randomization in Computing. Fall 2023

Exam I Solutions

1. Consider the following algorithm:

repeat

Pick a random $j \in[1, n]$;
if $A[j]<2$ then output "Type I" and quit;
if $A[j]>4$ then output: "Type II" and quit;
forever;
Analysis: Consider the case of A being of type I. The probability that $A[j]=1$ on a radomly picked j is $\frac{1}{3}$. Thus the probability of quitting in any execution of the repeat loop is $\frac{1}{3}$. Therefore, the probability of failure in any execution of the repeat loop is $\frac{2}{3}$. As a result, the probability of failure in the first k iterations of the repeat loop is $\left(\frac{2}{3}\right)^{k}$. We want this probability to be no more than $n^{-\alpha}$. This happens when $k \geq \log _{3 / 2} n$. This implies that the run time of this algorithm is $\widetilde{O}(\log n)$, if the arracy is of type I. A similar analysis holds when the array is of type II.
2. Pick a random sample S of size $s=n^{2 / 3}$ from X. Identify and output the element q of S whose rank in S is $i \frac{s}{n}$. Sampling takes $O(s)$ time. q can be found from S in $O(s)$ time using the BFPRT selection algorithm.
Let r_{q} be the rank of q in X. Using Sampling Lemma 2, Prob. $\left[\left|r_{q}-i\right|>\sqrt{3 \alpha} \frac{n}{\sqrt{s}} \sqrt{\log n}\right]<$ $n^{-\alpha}$. In other words, r_{q} is in the interval $i \pm O\left(n^{2 / 3} \sqrt{\log n}\right)$ with a high probability, i.e, r_{q} is in the interval $i \pm O\left(n^{3 / 4}\right)$ with a high probability.
3. Let \mathcal{S} be a subset of the field. We pick a random element r of \mathcal{S} and check if $F(r)=G(r)$. If not, we output "NO", else we output "YES". As was shown in class, the probability of an incorrect answer is $\leq \frac{n}{|\mathcal{S}|}$. This probability will be $\leq n^{-\alpha}$ if $|\mathcal{S}| \geq n^{\alpha+1}$.

Also, $f_{i}(r)$ can be computed in $O\left(d_{i}\right)$ time, for $1 \leq i \leq k$. Thus $F(r)$ can be computed in $O\left(\sum_{i=1}^{k} d_{i}\right)=O(n)$ time. Similarly, $G(r)$ can also be computed in $O(n)$ time. Thus the total run time of the algorithm is $O(n)$.
4. Note that two matrices E and F are inverses of each other if $E F=F E=I$. Let $A=\prod_{i=1}^{k} A_{i}$. In our problem, we have to check if $A C=C A=I$. We'll see how to check if $A C=I$. The same algorithm can be used to check if $C A=I$.

Let S be a subset of the field with $|S| \geq n^{\alpha}$. Pick a random $n \times 1$ vector v each of whose elements is picked uniformly randomly from S. Compute $A C v$. If $A C v=v$, output 'yes' else output 'no'.

Clearly, if $A C=I$, the algorithm will never output an incorrect answer. If $A C \neq I$ what is the probability that $A C v=v$? In other words, if $D=A C-I$, what is the probability that $D v=0$? Without loss of generality assume that the first row of D is non zero and the first
q entries of this row are nonzero and the rest of the elements are zero. Let d be this row. Let $d=\left(\begin{array}{llll}d_{1} & d_{2} & \ldots & d_{n}\end{array}\right)$ and $v^{T}=\left(\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right) . d v=0$ if $v_{1}=-\frac{\sum_{i=d_{1}}^{q} d_{i} v_{i}}{d_{1}}$. Now invoke the principle of deferred decisions and assume that all the entries of v have been chosen before v_{1}. Before v_{1} is chosen, the value of $-\frac{\sum_{i=2}^{q} d_{i} v_{i}}{d_{1}}$ is fixed to be some value of S. (In fact $-\frac{\sum_{i=2}^{q} d_{i} v_{i}}{d_{1}}$ may not even be an element of S). Since v_{1} is chosen uniformly randomly from S, the probability that v_{1} equals $-\frac{\sum_{i=2}^{q} d_{i} v_{i}}{d_{1}}$ is no more than $\frac{1}{|S|}=n^{-\alpha}$.
Note that $A C v$ can be computed with $(k+1)$ matrix-vector products. This will take $O\left(n^{2} k\right)$ time.
5. Let h be the height of a random skip list \mathcal{L} with n elements. It was shown in class that the height of \mathcal{L} is $\widetilde{O}(\log n)$. Specifically, the height of \mathcal{L} is $\leq c \alpha \log n$ with a probability of $\geq\left(1-n^{-\alpha}\right)$, for some constant c. The n elements in the data structure are at level 0 . An element in level 0 goes to level 1 with probability $\frac{1}{2}$ and it does not go to level 1 with the same probability. An element in level 1 goes to level 2 with probability $\frac{1}{2}$ and it does not go to level 2 with the same probability, etc. This is how the skip list is constructed.
Chernoff bounds imply that if μ is the mean of a binomial random variable X, then,

$$
\text { Prob. }\left[X \geq \mu+\sqrt{3 \alpha \mu \log _{e} n}\right] \leq n^{-\alpha} .
$$

Consider level k of \mathcal{L} (where $1 \leq k \leq h$). The expected number of elements in this level is $n_{k}=\frac{n}{2^{k}}$. Using the Chernoff bounds, this number is $\leq N_{k}=\frac{n}{2^{k}}+\sqrt{3(\alpha+1)\left(n / 2^{k}\right) \log _{e} n}$ with a probability of $\geq\left(1-n^{-(\alpha+1)}\right) . N_{k} \leq 2 \frac{n}{2^{k}}$ with a probability of $\geq\left(1-n^{-(\alpha+1)}\right)$, for every level $k, 1 \leq k \leq \frac{\log n}{2}$. The total number of nodes in the levels 1 through $\frac{\log n}{2}$ is thus $\leq \sum_{k=1}^{(1 / 2) \log n} \frac{n}{2^{k-1}}=O(n)$ with a probability of $\geq\left(1-n^{-(\alpha+1)}(\log n) / 2\right)$. Also, the number of elements in level k is $\leq 2 \sqrt{n}$ with a probability of $\geq\left(1-n^{-(\alpha+1)}\right)$, for every $k \geq \frac{\log n}{2}$. This means that the total number of nodes in levels $\frac{\log n}{2}+1$ through h is $O(\sqrt{n} \log n)$ with a probability of $\geq\left(1-O\left(n^{-(\alpha+1)} \log n\right)\right)$.
In summary, the total size of \mathcal{L} is $O(n)$ with a probability of $\geq\left(1-n^{-\alpha}\right)$.
6. Note that when $m=n, h_{a, b}(x)$ simplifies to $(a x+b) \bmod p$. Fix x_{1}, x_{2}, y_{1} and y_{2}. How many hash functions h are there in H under which $h\left(x_{1}\right)=y_{1}$ and $h\left(x_{2}\right)=y_{2}$? We observe that the following equations

$$
\begin{aligned}
& \left(a x_{1}+b\right) \bmod p=y_{1} \\
& \left(a x_{2}+b\right) \bmod p=y_{2}
\end{aligned}
$$

have a unique solution for a and b in \mathcal{Z}_{p}. There are a total of n^{2} has functions in H. Thus it follows that Prob. $\left[h\left(x_{1}\right)=y_{1}\right.$ and $\left.h\left(x_{2}\right)=y_{2}\right]=\frac{1}{n^{2}}$.

