1. Consider the following algorithm:

repeat

Pick a random $j \in [1, n]$; if A[j] < 2 then output "Type I" and quit; if A[j] > 4 then output: "Type II" and quit; forever;

Analysis: Consider the case of A being of type I. The probability that A[j] = 1 on a radomly picked j is $\frac{1}{3}$. Thus the probability of quitting in any execution of the repeat loop is $\frac{1}{3}$. Therefore, the probability of failure in any execution of the repeat loop is $\frac{2}{3}$. As a result, the probability of failure in the first k iterations of the repeat loop is $\left(\frac{2}{3}\right)^k$. We want this probability to be no more than $n^{-\alpha}$. This happens when $k \ge \log_{3/2} n$. This implies that the run time of this algorithm is $\tilde{O}(\log n)$, if the arracy is of type I. A similar analysis holds when the array is of type II.

2. Pick a random sample S of size $s = n^{2/3}$ from X. Identify and output the element q of S whose rank in S is $i\frac{s}{n}$. Sampling takes O(s) time. q can be found from S in O(s) time using the BFPRT selection algorithm.

Let r_q be the rank of q in X. Using Sampling Lemma 2, $Prob.\left[|r_q - i| > \sqrt{3\alpha} \frac{n}{\sqrt{s}} \sqrt{\log n}\right] < n^{-\alpha}$. In other words, r_q is in the interval $i \pm O(n^{2/3}\sqrt{\log n})$ with a high probability, i.e, r_q is in the interval $i \pm O(n^{3/4})$ with a high probability.

3. Let S be a subset of the field. We pick a random element r of S and check if F(r) = G(r). If not, we output "NO", else we output "YES". As was shown in class, the probability of an incorrect answer is $\leq \frac{n}{|S|}$. This probability will be $\leq n^{-\alpha}$ if $|S| \geq n^{\alpha+1}$.

Also, $f_i(r)$ can be computed in $O(d_i)$ time, for $1 \le i \le k$. Thus F(r) can be computed in $O(\sum_{i=1}^k d_i) = O(n)$ time. Similarly, G(r) can also be computed in O(n) time. Thus the total run time of the algorithm is O(n).

4. Note that two matrices E and F are inverses of each other if EF = FE = I. Let $A = \prod_{i=1}^{k} A_i$. In our problem, we have to check if AC = CA = I. We'll see how to check if AC = I. The same algorithm can be used to check if CA = I.

Let S be a subset of the field with $|S| \ge n^{\alpha}$. Pick a random $n \times 1$ vector v each of whose elements is picked uniformly randomly from S. Compute ACv. If ACv = v, output 'yes' else output 'no'.

Clearly, if AC = I, the algorithm will never output an incorrect answer. If $AC \neq I$ what is the probability that ACv = v? In other words, if D = AC - I, what is the probability that Dv = 0? Without loss of generality assume that the first row of D is non zero and the first q entries of this row are nonzero and the rest of the elements are zero. Let d be this row. Let $d = (d_1 \ d_2 \ \dots \ d_n)$ and $v^T = (v_1 \ v_2 \ \dots \ v_n)$. dv = 0 if $v_1 = -\frac{\sum_{i=2}^q d_i v_i}{d_1}$. Now invoke the principle of deferred decisions and assume that all the entries of v have been chosen before v_1 . Before v_1 is chosen, the value of $-\frac{\sum_{i=2}^q d_i v_i}{d_1}$ is fixed to be some value of S. (In fact $-\frac{\sum_{i=2}^q d_i v_i}{d_1}$ may not even be an element of S). Since v_1 is chosen uniformly randomly from S, the probability that v_1 equals $-\frac{\sum_{i=2}^q d_i v_i}{d_1}$ is no more than $\frac{1}{|S|} = n^{-\alpha}$.

Note that ACv can be computed with (k+1) matrix-vector products. This will take $O(n^2k)$ time.

5. Let *h* be the height of a random skip list \mathcal{L} with *n* elements. It was shown in class that the height of \mathcal{L} is $\widetilde{O}(\log n)$. Specifically, the height of \mathcal{L} is $\leq c\alpha \log n$ with a probability of $\geq (1 - n^{-\alpha})$, for some constant *c*. The *n* elements in the data structure are at level 0. An element in level 0 goes to level 1 with probability $\frac{1}{2}$ and it does not go to level 1 with the same probability. An element in level 1 goes to level 2 with probability $\frac{1}{2}$ and it does not go to level 2.

Chernoff bounds imply that if μ is the mean of a binomial random variable X, then,

$$Prob.\left[X \ge \mu + \sqrt{3\alpha\mu\log_e n}\right] \le n^{-\alpha}$$

Consider level k of \mathcal{L} (where $1 \leq k \leq h$). The expected number of elements in this level is $n_k = \frac{n}{2^k}$. Using the Chernoff bounds, this number is $\leq N_k = \frac{n}{2^k} + \sqrt{3(\alpha+1)(n/2^k)\log_e n}$ with a probability of $\geq (1 - n^{-(\alpha+1)})$. $N_k \leq 2\frac{n}{2^k}$ with a probability of $\geq (1 - n^{-(\alpha+1)})$, for every level k, $1 \leq k \leq \frac{\log n}{2}$. The total number of nodes in the levels 1 through $\frac{\log n}{2}$ is thus $\leq \sum_{k=1}^{(1/2)\log n} \frac{n}{2^{k-1}} = O(n)$ with a probability of $\geq (1 - n^{-(\alpha+1)}(\log n)/2)$. Also, the number of elements in level k is $\leq 2\sqrt{n}$ with a probability of $\geq (1 - n^{-(\alpha+1)})$, for every $k \geq \frac{\log n}{2}$. This means that the total number of nodes in levels $\frac{\log n}{2} + 1$ through h is $O(\sqrt{n}\log n)$ with a probability of $\geq (1 - O(n^{-(\alpha+1)}\log n))$.

In summary, the total size of \mathcal{L} is O(n) with a probability of $\geq (1 - n^{-\alpha})$.

6. Note that when m = n, $h_{a,b}(x)$ simplifies to $(ax + b) \mod p$. Fix x_1, x_2, y_1 and y_2 . How many hash functions h are there in H under which $h(x_1) = y_1$ and $h(x_2) = y_2$? We observe that the following equations

$$(ax_1 + b) \mod p = y_1$$
$$(ax_2 + b) \mod p = y_2$$

have a unique solution for a and b in \mathbb{Z}_p . There are a total of n^2 has functions in H. Thus it follows that $Prob.[h(x_1) = y_1 \text{ and } h(x_2) = y_2] = \frac{1}{n^2}$.