1. Consider the following algorithm:

```plaintext
repeat
    Pick a random \( j \in [1, n] \);
    if \( A[j] < 2 \) then output “Type I” and quit;
    if \( A[j] > 4 \) then output: “Type II” and quit;
forever;
```

Analysis: Consider the case of \(A \) being of type I. The probability that \(A[j] = 1 \) on a randomly picked \(j \) is \(\frac{1}{3} \). Thus the probability of quitting in any execution of the repeat loop is \(\frac{1}{3} \). Therefore, the probability of failure in any execution of the repeat loop is \(\frac{2}{3} \). As a result, the probability of failure in the first \(k \) iterations of the repeat loop is \(\left(\frac{2}{3} \right)^k \). We want this probability to be no more than \(n^{-\alpha} \). This happens when \(k \geq \log_{3/2} n \). This implies that the run time of this algorithm is \(O(\log n) \), if the array is of type I. A similar analysis holds when the array is of type II.

2. Pick a random sample \(S \) of size \(s = \frac{n^2}{3} \) from \(X \). Identify and output the element \(q \) of \(S \) whose rank in \(S \) is \(i \). Sampling takes \(O(s) \) time. \(q \) can be found from \(S \) in \(O(s) \) time using the BFPRT selection algorithm.

 Let \(r_q \) be the rank of \(q \) in \(X \). Using Sampling Lemma 2, \(\text{Prob.} \left[|r_q - i| > \sqrt{3\alpha} \frac{n}{\sqrt{s}} \sqrt{\log n} \right] < n^{-\alpha} \). In other words, \(r_q \) is in the interval \(i \pm O(n^{2/3} \sqrt{\log n}) \) with a high probability, i.e., \(r_q \) is in the interval \(i \pm O(n^{3/4}) \) with a high probability.

3. Let \(S \) be a subset of the field. We pick a random element \(r \) of \(S \) and check if \(F(r) = G(r) \). If not, we output ”NO”, else we output ”YES”. As was shown in class, the probability of an incorrect answer is \(\leq \frac{n}{|S|} \). This probability will be \(\leq n^{-\alpha} \) if \(|S| \geq n^{\alpha+1} \).

 Also, \(f_i(r) \) can be computed in \(O(d_i) \) time, for \(1 \leq i \leq k \). Thus \(F(r) \) can be computed in \(O(\sum_{i=1}^k d_i) = O(n) \) time. Similarly, \(G(r) \) can also be computed in \(O(n) \) time. Thus the total run time of the algorithm is \(O(n) \).

4. Note that two matrices \(E \) and \(F \) are inverses of each other if \(EF = FE = I \). Let \(A = \Pi_{i=1}^k A_i \).

 In our problem, we have to check if \(AC = CA = I \). We’ll see how to check if \(AC = I \). The same algorithm can be used to check if \(CA = I \).

 Let \(S \) be a subset of the field with \(|S| \geq n^\alpha \). Pick a random \(n \times 1 \) vector \(v \) each of whose elements is picked uniformly randomly from \(S \). Compute \(ACv \). If \(ACv = v \), output ‘yes’ else output ‘no’.

 Clearly, if \(AC = I \), the algorithm will never output an incorrect answer. If \(AC \neq I \) what is the probability that \(ACv = v \)? In other words, if \(D = AC - I \), what is the probability that \(Dv = 0 \)? Without loss of generality assume that the first row of \(D \) is non zero and the first
Let \(d = (d_1 \ d_2 \ldots \ d_n) \) and \(v^T = (v_1 \ v_2 \ldots \ v_n) \). \(dv = 0 \) if \(v_1 = -\sum_{i=2}^{n} \frac{d_i v_i}{d_1} \). Now invoke the principle of deferred decisions and assume that all the entries of \(v \) have been chosen before \(v_1 \). Before \(v_1 \) is chosen, the value of \(-\sum_{i=2}^{n} \frac{d_i v_i}{d_1} \) is fixed to be some value of \(S \). (In fact \(-\sum_{i=2}^{n} \frac{d_i v_i}{d_1}\) may not even be an element of \(S \)). Since \(v_1 \) is chosen uniformly randomly from \(S \), the probability that \(v_1 \) equals \(-\sum_{i=2}^{n} \frac{d_i v_i}{d_1}\) is no more than \(\frac{1}{|S|} = n^{-\alpha} \).

Note that \(ACv \) can be computed with \((k+1)\) matrix-vector products. This will take \(O(n^2k) \) time.

5. Let \(h \) be the height of a random skip list \(L \) with \(n \) elements. It was shown in class that the height of \(L \) is \(\tilde{O}(\log n) \). Specifically, the height of \(L \) is \(\leq c \alpha \log n \) with a probability of \(\geq (1 - n^{-\alpha}) \), for some constant \(c \). The \(n \) elements in the data structure are at level 0. An element in level 0 goes to level 1 with probability \(\frac{1}{2} \) and it does not go to level 1 with the same probability. An element in level 1 goes to level 2 with probability \(\frac{1}{2} \) and it does not go to level 2 with the same probability, etc. This is how the skip list is constructed.

Chernoff bounds imply that if \(\mu \) is the mean of a binomial random variable \(X \), then,

\[
\text{Prob.}\left[X \geq \mu + \sqrt{3\alpha\mu \log e \ n}\right] \leq n^{-\alpha}.
\]

Consider level \(k \) of \(L \) (where \(1 \leq k \leq h \)). The expected number of elements in this level is \(n_k = \frac{n}{2^k} \). Using the Chernoff bounds, this number is \(\leq N_k = \frac{n}{2^k} + \sqrt{3(\alpha + 1)(n/2^k) \log e \ n} \) with a probability of \(\geq (1 - n^{-(\alpha+1)}) \). \(N_k \leq 2 \frac{n}{2^k} \) with a probability of \(\geq (1 - n^{-(\alpha+1)}) \), for every level \(k \), \(1 \leq k \leq \frac{\log n}{2} \). The total number of nodes in the levels 1 through \(\frac{\log n}{2} \) is thus \(\leq \sum_{k=1}^{(1/2)\log n} \frac{n}{2^k} = O(n) \) with a probability of \(\geq (1 - n^{-(\alpha+1)}(\log n)/2) \). Also, the number of elements in level \(k \) is \(\leq 2\sqrt{n} \) with a probability of \(\geq (1 - n^{-(\alpha+1)}) \), for every \(k \geq \frac{\log n}{2} \). This means that the total number of nodes in levels \(\frac{\log n}{2} + 1 \) through \(h \) is \(O(\sqrt{n} \log n) \) with a probability of \(\geq \left(1 - O(n^{-(\alpha+1)}) \log n\right) \).

In summary, the total size of \(L \) is \(O(n) \) with a probability of \(\geq (1 - n^{-\alpha}) \).

6. Note that when \(m = n \), \(h_{a,b}(x) \) simplifies to \((ax+b) \mod p \). Fix \(x_1, x_2, y_1 \) and \(y_2 \). How many hash functions \(h \) are there in \(H \) under which \(h(x_1) = y_1 \) and \(h(x_2) = y_2 \)? We observe that the following equations

\[
(ax_1 + b) \mod p = y_1
\]

\[
(ax_2 + b) \mod p = y_2
\]

have a unique solution for \(a \) and \(b \) in \(\mathbb{Z}_p \). There are a total of \(n^2 \) has functions in \(H \). Thus it follows that \(\text{Prob.}[h(x_1) = y_1 \text{ and } h(x_2) = y_2] = \frac{1}{n^2} \).