
CSE 6512 Randomization in Computing. Spring 2016

Exam #1 Solutions

1. Consider the following algorithm:

for i := 1 to α log n do

Pick a random j ∈ [1, n]. If a[j] = 1 then output “Type II” and quit;

Output: ”Type I”;

Analysis: Note that if the array is of type I, the above algorithm will never give an incorrect

answer. Thus assume that the array is of type II. We’ll calculate the probability of an incorrect

answer as follows.

The output will be incorrect if all of the random elements picked are zeros. The probability

of this happening is ≤
(
1
2

)α logn
= n−α.

Thus the output of this algorithm is correct with high probability.

2. Pick a random sample of c(α + 1) log n elements from the array. Identify the element that

occurs the most number of times in the sample and output this element. This can be done

by sorting the sample elements in O(log n log logn) time.

Let n1 and n2 be the number of copies of x and y occurring in the sample, respectively.

Applying Chernoff bounds (with ϵ = 1
5), we see that

Prob.

[
n1 ≤

2

5
c(α+ 1) log n

]
≤ exp

(
−c(α+ 1) log n

100

)
.

The above probability will be ≤ n−(α+1) if c ≥ 100. Also,

Prob.

[
n2 ≥

3

10
c(α+ 1) log n

]
≤ exp

(
−c(α+ 1) log n

300

)
.

The above probability will be ≤ n−(α+1) if c ≥ 300.

Thus if we pick a random sample with 300(α + 1) log n elements then n1 will be larger than

n2 (and n1 will also be larger than the number of occurrences of any other element) with a

probability of ≥ (1− n−α).

3. The approach is similar to what we did in class to check if AB = C. Here is an algorithm:

for i = 1 to α log n do

Pick a random binary vector r and check if AkBkr = Ckr;

if no then output NO and quit;

Output YES

Analysis: If AkBk = Ck, then the above algorithm will never output an incorrect an-

swer. Thus consider the case AkBk ̸= Ck. For a randomly chosen vector r, probability

that AkBkr = Ckr is no more than 1
2 as was shown in class. Thus, the probability that

AkBkr = Ckr on all the α log n vectors chosen is ≤
(
1
2

)α logn
= n−α.

The computation of AkBkr (for any vector r) takes O(n2k) time since it involves 2k matrix-

vector products. Similarly, the computation of Ckr takes O(n2k) time (for any given r). Thus

the run time of the algorithm is O(n2k log n).

4. The degree of both [f(x)]m and [g(x)]k is N = mn. We can use an algorithm similar to the

one discussed in class. The idea is to pick a random element r from a subset S of the field

and check if [f(r)]m = [g(r)]k. If yes we output YES else we output NO.

Analysis: If [f(x)]m = [g(x)]k, then [f(r)]m = [g(r)]k for any r and hence the algorithm will

never output an incorrect answer. If [f(x)]m ̸= [g(x)]k, then the probability that [f(r)]m =

[g(r)]k is ≤ mn
|S| as was shown in class. This probability will be ≤ N−α if |S| ≥ mnNα.

The time needed to compute [f(r)]m is O(n logm). Likewise the time needed to compute

[g(r)]k is O(d log k). Thus the time needed to compute both is O(d logm).

A deterministic algorithm: Here we use the fact that we can multiply two degree N

polynomials in O(N logN) time. Compute both [f(x)]m and [g(x)]k using the repeated

squaring technique and check for equality. For simplicity assume that m = 2q for some integer

q. In this case compute the following: [f(x)]2, [f(x)]2
2
, . . . , [f(x)]2

q
by repeated squaring. The

total time is O((n+ 2n+ . . .+ 2qn) log(mn)) = O(mn log(mn)).

