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1 Introduction

Computational Geometry problems deal with geometric objects such as points, lines, planes, etc.
In many computational geometry problems, the use of randomization yields algorithms that are
faster than that known deterministic counterparts. Also, these randomized algorithms are sim-
pler. However, analysis of these algorithms can be complex in many cases. One of the well known
techniques to analyze randomized algorithms is backwards analysis. In this survey, we use the back-
wards analysis to analyze the expected performance of some randomized algorithms. In backwards
analysis, we pretend the algorithm is running backwards in time, from output to input. Backwards
analysis was popularized for the first time by Seidel [5].

There are many approaches to design randomized algorithm. In this paper, we use two of them,
namely divide and conquer and randomized incremental construction. The divide and conquer
approach is a well know in the area of designing algorithms. In this survey, for solving three prob-
lems including Delaunay triangulation of a convex polygon, trapezoidal decomposition, and planar
convex hulls we use the divide and conquer approach. In randomized incremental construction, we
only use randomization to generate a random permutation for input objects. Then, each object
will be processed according to its occurrence in the permutation. In fact, a geometric structure
will be built incrementally. In the last part of this survey, we present a randomized incremental
construction for the d-dimensional convex hull problem. Note that for many problems, we can
easily change the approach of designing from one to another.

2 Delaunay Triangulation of a Convex Polygon

Let S be a set of n points in the plane in general position, i.e. no four points are co-circular and
not three points lie on a straight line. The Delaunay triangulation of S or Del(S) is a triangulation
of S such that for each triangle in Del(S), the circumscribed disk of the triangle does not have
any points of S in its interior. In this section, we describe a randomized algorithm proposed by
Chew [1] for the case that the points are vertices of a convex polygon P . This algorithm is recursive
and it is as follows.

1. If S has only three points, then Del(S) is the triangle formed by those points and quit.

2. Choose a random point q ∈ S, and Let p and r be the two points adjacent to q in convex
polygon P . Recursively compute the Delaunay triangulation of S′ = S \ {q}.

3. Identify all bad triangles, namely the triangle p, q, r and all triangles of Del(S′) whose cir-
cumscribed disk contains q.
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Figure 1: Constructing Delaunay triangulation of a convex polygon starting at a random point q.
(left) Del(S′). (center) The bad triangles. (right) Del(S).

4. Remove those edges of bad triangles which are shared between two of them. This results
some faces combined into one face f containing q.

5. Retriangulate face f by adding all diagonals that have q as an endpoint.

Figure 1 illustrate an example for this algorithm. For the third step of the algorithm, we create a
dual graph G for Del(S′), and we search G in a depth-first manner. In the dual graph G, nodes are
triangles and if two triangles share an edge, we create an edge in G between the two corresponding
nodes. Note that the maximum degree of nodes in G is 3, and the set of bad triangles forms a
connected subgraph of G. Therefore, we can identify all bad triangles in time proportional to their
number.

Now, we want to find the expected running time of this algorithm. Note that the expected
running time of this algorithm is the expected time without recursive call. It is not hard to see that
this cost is proportional to the number of bad triangles. Therefore, our goal is finding the expected
number of bad triangles.

Finding bad triangles in the above algorithm seems difficult, especially when we fix our attention
on a specific point q. The trick is expressing this cost in terms of the resulting structure Del(S),
not in terms of Del(S′) and q. So, it is easy to see that the number of bad triangles is exactly one
more than the number of diagonals incident to q and introduced in the algorithm. Equivalently,
this number is proportional to the degree of q in Del(S). Because q is chosen randomly from S, the
expected degree of q is Del(S) is the sum of the degrees of all vertices in Del(S) divided by n, which
is twice the number of edges if Del(S) divided by n. According to the Euler’s formula for planar
graphs, |F | + |V | − |E| = 2. In this formula, F , V and E are the set of faces, vertices and edges
of a planar graph, respectively. Note that in a triangulation of a convex polygon, |F | = |V | − 1.
Therefore, |E| = 2|V | − 3, and the expected degree of q is 4 − 6/n. Thus, the expected time of
the algorithm without recursive call is constant and it follows that overall expected time of the
algorithm is O(n).
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Figure 2: (left) A set of line segments S in a bounding rectangle F . (right) T (S).

Figure 3: Trapezoidal decomposition TS(R) for a subset R = {1, 2, 3, 4, 5} of S.

3 Line Segments Intersection

Let S be a set of n straight line segments in the plane. The goal is finding all intersecting pairs of
segments in S. We also assume that S is non-degenerate. By non-degenerate we mean endpoints
are unique, endpoints do not share the same x-coordinate, endpoints do not lie on a line segment,
and no three segments intersect in a common point.

In this section we present an algorithm proposed by Mulmuley [4]. Mulmuley’s algorithm not
only determine pairs of intersecting segments, but also it constructs a trapezoidal decomposition
induced by S. This decomposition T (S) is defined as follows. First draw an axis-aligned rectangle
F that contains S in its interior. Then, for each point in the set of endpoints and intersection
points of S, draw its vertical extension. A vertical extension is two vertical rays, one going up and
the other going down, that extend until they hit a segment of S or the boundary F . Thus, F is
decomposed into trapezoids that each have two vertical side. Note that one of the two vertical
sides can have length zero. Figure 2 illustrates an example for the trapezoidal diagram. Let K be
the number of intersecting pairs of segments in S. Using a sweep argument it is not hard to prove
that T (S) contains exactly 3(n + K) + 1 trapezoids. So, we can view T (S) as a planar graph with
O(n + K) faces, edges and vertices.

Similar to definition of T (S), we define a trapezoidal decomposition for a subset R ⊂ S of size
r. In the trapezoidal decomposition TS(R), we only keep line segments R and the endpoints of
segments of S \R in the rectangle F . Then for all endpoints, we draw their vertical extension and
we extend them until they hit a line segment of R or the boundary of F . Figure 3 shows an example
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Figure 4: GS(R).

of TS(R). The decomposition TS(R) partitions F into 2n + r + 3KR + 1 trapezoids, where KR is
the number of pairs of intersecting segments in R. So, TS(R) is a planar graph with O(n + KR)
faces, edges, and vertices.

Mulmuley’s algorithm is based on the notion of TS(R) and it is as follows.

1. If R = ∅, then compute TS(R) directly by sorting the endpoints of S by their x-coordinates.

2. Otherwise, randomly pick a segment s ∈ R and recursively compute TS(R\{s}) and introduce
s into this trapezoidation to obtain TS(R).

In order to introduce s into TS(R \ {s}), Mulmuley used a specific representation of TS(R) that
we describe in the following. For a segment s ∈ R, if s is intersected by i other segments of R,
then s is partitioned into i + 1 pieces. We represent each piece of each segment in R as a narrow
zero width face. This results another planar graph GS(R). Figure 4 shows an example of GS(R).
Note that the number of vertices in GS(R) is the same as the number of vertices in TS(R), which
is O(n + KR). Each non zero width face of GS(R) is incident with at most six edges (one for each
top and bottom segment and at most two for each of the left and the right vertical extensions).
Note that only the zero width faces can have more than a constant number of edges.

To introduce the segment s into GS(R′), where R′ = R\{s}, first we should determine the faces
and edges of GS(R′) that are intersected by s. Then, we create new faces of GS(R) that includes
splitting the faces of GS(R′) that are intersected by s, creating the zero width faces for the pieces
of s, adding the vertical extensions from intersection points of s with the other segments of R, and
merging faces that are separated by vertical edges that are not part of vertical extensions any more.

The first step can be done as follows. By the definition, the two endpoints of s are in GS(R′).
So, in constant time we can determine the leftmost face of GS(R′) that is intersected by s. Then,
we walk along segment s until we reach the right endpoint of s. Assume that we just entered a
face f through some edge e. We require to find an edge of f that s leaves f through that edge and
enters another face. To do this end, we examine all edges of face f . Now, we have reached a new
face and we repeat this process.

To analyze the time complexity of introducing segment s, we need to compute the time for the
two previous steps. It is not hard to see that cost of step two is more than step one. So, we only
need to consider the cost of step one. This cost is clearly the sum of the degrees of the faces of
GS(R′) that are intersected by s. For a face f , let deg(f,GS(R′)) be the degree of face f , i.e. the
number of edges incident to f .
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Figure 5: (left) Inserting segment 6 into GS(R). (right) ZR(6) is shaded.

In order to apply backwards analysis, we are required to express the cost of step one of intro-
ducing a segment s into GS(R′) in terms of result graph GS(R) and not in terms of GS(R′). It is
not hard to see that this cost is given by

∑
f∈ZR(s) deg(f,GS(R)), where ZR(s) is the set of all zero

width faces of GS(R) that either derive from pieces of s in GS(R) or from those pieces of other
segments that are incident to intersection points with s, see Figure 5.

If s is chosen randomly from segments of R, then the expected cost of adding s to GS(R′) is
proportional to

1

r

∑
s∈R

∑
f∈ZR(s)

deg(f,GS(R)).

Note that in this double sum, every piece of a segment in R contributes at most three times,
because each piece of a segment is incident to at most two other segment. Therefore, if Z(R)
denotes the set of all faces formed by pieces of segments in R, then this double sum is at most

3

r

∑
f∈Z(R)

deg(f,GS(R)).

Because GS(R) is a planar graph, this sum is proportional to the complexity of the graph,
which is O(n + KR). Therefore, the expected cost of introducing a segment is O(nr + KR

r ). Note
that in the algorithm, R is a sample subset of S of size r. Now, if {s, t} is one of the K pairs of

intersecting segments in S, then the probability of selecting both of them in R is r(r−1)
n(n−1) . So, the

expected number of pairs of intersecting segments in R is r(r−1)
n(n−1)K. It follows that the expected

cost of introducing the last segment into GS(R) is O(nr + r−1
n(n−1)K). Therefore, the expected cost

for all recursive call of the entire algorithm is

n∑
r=1

O(
n

r
+

r − 1

n(n− 1)
K) = O(n log n + K).

Note that to compute GS(∅), we only require to sort 2n numbers. Thus, the expected running
time of the entire algorithm is O(K + n log n).

4 Planar Convex Hulls

Given a set S of n points, the convex hull CH(S) is the smallest convex set that contains all of the
n points. For a set of points in the plane, the boundary of CH(S) forms a convex polygon whose
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Figure 6: The convex hull of a set S of 12 points in the plane.

vertices are a subset of S. So, the problem of computing the convex hull of S in the plane is finding
the smallest convex polygon that contains all of the points in S. The output of this problem is a
list of points in S that appear as vertices of CH(S). In this problem, we assume that points are
in general position, i.e. no three points are colinear. Figure 6 shows an example of planar convex
hulls. In this section, we present an algorithm proposed by Clarkson and Shor [3] to find the convex
hull of a point set in the plane.

The algorithm to compute CH(R) for R ⊂ S is as follows.

1. If |R| = 3, then CH(R) is the triangle formed by the three points of R, and quit.

2. Otherwise, randomly choose a point q from R, and let R′ = R \ {q}.

3. Recursively compute CH(R′).

4. If q is contained in CH(R′), then CH(R) = CH(R′) and quit.

5. Otherwise, let e be an edge of CH(R′) visible from q.

6. Determine all visible edges of CH(R′) from q by doing a search starting at e.

7. Replace all the visible edges by two edges that have q as a common endpoint.

Figure 7 illustrates the last two steps of the algorithm. In summary, this algorithm has two
main steps. The first step is finding all visible edges. Then, in the second step it removes all of
visible edges and create two new edges. To find the cost of second step, we use an amortization
argument. Note that when a visible edge is deleted, it does not appear in the convex hull any more.
So, we can charge the cost of deletion to the cost of creation of an edge. Furthermore, whenever
a point is added, at most two new edges are created. Therefore, the overall cost of creations and
deletions for the entire algorithm is O(n).

To implement the first step, for each point p ∈ S \ R we keep a canonical conflict edge ep
of CH(R) which is visible from p. A canonical conflict edge ep is a unique edge of CH(R) that
intersects a straight line segment that connects p to a fixed point c in the interior of CH(R) (not
necessarily in S). If for p ∈ S \ R, the conflict edge ep is not visible from q, then this edge is also
an edge of CH(R) and remains to be the conflict edge for p. Otherwise, ep is visible from q and
needs to be deleted. Now, the new conflict edge of p is one of the two new added edges incident to
q.
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Figure 7: (left) before inserting q. (right) after inserting q.

To estimate the expected cost of maintaining the conflict information, we consider each point
p ∈ S individually. If conflict edge of p is changed, we can find the new conflict edge in constant time.
So, we only require to estimate the expected number of changes for p. Now, we find the probability
of changing a conflict edge ep when computing CH(R) from CH(R′). Backwards analysis suggests
that we should express this probability in terms of the output CH(R). Clearly, ep is new for p iff q
is one of the endpoints of ep. Because q is a random element of R, the probability that q be one of
the two endpoints of ep is 2/r. Therefore, the expected number of conflict edge changes for a point
p when computing CH(R) from CH(R′) is at most 2/r. Summing over all r ≤ n yields that the
expected total number of conflict edge changes for a point p ∈ S is O(log n). Note that creating
initial conflict information in the case |R| = 3 takes O(n) time. Thus, the entire maintenance of
the conflict information and also the entire algorithm takes expected time O(n log n).

5 d-dimensional Convex Hulls

In Section 4 we consider a special case of the convex hull problem, when the given point set is in
the plane. Here, we present an algorithm given by Clarkson et al. [2] to compute the convex hull
of a point set S in d-dimension. Similar to Section 4, assume that the input points are in general
position, i.e. no d+1 points are coplanar. If S ⊂ E3, then the boundary of CH(S) is a collection of
triangles, which are called facets. Each facet has a supporting plane containing it. The supporting
halfspace of a facet is a halfspace of the supporting plane that contains CH(S), see Figure 8. In
fact, CH(S) is the intersection of supporting halfspaces of its facets. The open complement of a
supporting halfspace of a facet an empty halfspace of S.

Now consider the problem of maintaining the convex hull under insertions. In fact, we want to
know that for a new point s ∈ S \ R, the difference between CH(R′), R′ = R ∪ {s}, and CH(R).
Similar to the planar case, we are interested to find visible facets from point s. So, the algorithm
has two main steps. In the first step, search step, we want to find the facets of CH(R) that are
visible from s. In the next step, update step, we should delete the visible facets and determine the
new facets incident to s.

In order to make the search and the update steps convenient, we maintain a triangulation T of
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Figure 8: A convex hull for input points S ⊂ E3. a facet f and its supporting plane is shown.
Arrows indicate the supporting halfspace of f

the convex hull. This triangulation is a collection of tetrahedra. When a new point is inserted into
T , for each visible facet we create the tetrahedron with that facet and a vertex which is the new
point. We call the visible facet the base facet of the tetrahedron, and the inserted point its peak
vertex, see Figure 9. The facets of CH(R′)\CH(R) will be among the facets of the new tetrahedra.
We also maintain adjacencies among these tetrahedra such that each tetrahedron knows the four
others that it shares a facet. We can represent adjacencies for current facets by including tetrahedra
with current base facets and with a dummy peak vertex that may later be replaced by a point visible
to the base facet.

If less than d+1 points are added, we simply maintain R. When R has d+1 points, we initialize
T with an origin tetrahedron whose vertices are all points and it has d + 1 adjacent tetrahedra,
which all have the dummy point as a peak vertex.

In order to find current visible facets of CH(R), we use visibility of old deleted facets. After
insertion of new point, we mark its visible facets deleted. These deleted facets live on as base facets
of tetrahedra in T , and they help with searches for other points. To use these deleted facets, we
need to extend the notion of visibility. A facet is visible to a point if the point is in the halfspace
that was empty halfspace for the facet when it was created. With this definition of visibility, the
search procedure starts with the origin tetrahedron and search the neighbors until it finds all of
visible facets. The reason that the search procedure works is if we draw a line segment from a
point in the origin tetrahedron to the new point, every base facet of a tetrahedron that meets the
segment is visible to the new point. Other visible facets can also be found using the adjacency
information.

To update the convex hull, we need to create new facets incident to s. Each new facet incident
to s has an edge called horizon that is contained in a facet visible to s, and also in another facet
not visible to s. Figure 10 shows horizon edges. Since each visible facet is adjacent to at most three
facets that are not visible, the time needed to create the new facets is proportional to the number
of old facets.

The required time to insert a new point is dominated by the search time and this is proportional
to the number of deleted and current visible facets. We assume that the points are inserted randomly
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Figure 9: (left) CH(R) before inserting s. The face f is one the visible facets from s. (right) The
tetrahedron with base f and peak s.

Figure 10: Horizon edges for a new point s.
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in the order x1, x2, · · · , xn. This implies that xi is a random element of S \ Ri−1. Let Ti denote
the triangulation T after i insertions. The analysis will express the expected time in terms of fj ,
which is the expected number of facets of CH(Rj). Note that when d = 3, we have fj < 2r − 4,
and in general fj = O(jbd/2c). Let fd = 2 and fi = 0 for i < d.

Theorem 1. The expected size of the triangulation Tr of CH(Rr) is pr =
∑

j≤r dfj/j.

Proof. After d+1 points have been added, the triangulation Td+1 has d+2 simplices. For j ≥ d+2,
the base facets of Tj that are not base facets of Tj−1 are those incident to xj and facets of the hull
of Rj . Since each facet is incident to d vertices, the expected number of vertex-facet incidences is
dfj . Since xj is a random element of Rj , it is incident to an expected dfj/j facets.

Theorem 2. The expected number of base facets of Tr−1that see xr is

−dfr
r

+
∑
j≤r

d(d− 1)fj
j(j − 1)

.

Proof. Let T = Tr−1 = T (x1, · · · , xr−1) and T ′ = T (xr, x1, · · · , xr−1). In fact, in T ′ we pretend
that xr was put in first. Let X be the number of base facets of Tr−1 that see xr. Now, X = |T \T ′|,
since T \ T ′ is the set of base facets in T which see xr, and hence not in T ′. Note that for finite
sets A and B,

|A|+ |B \A| = |A ∪B| = |B|+ |A \B|.
So, we have

X = |T \ T ′| = |T | − |T ′|+ |T ′ \ T |.
By the linearity of expectation, and using Theorem 1,

E[X] = E[|T \ T ′|] = pr−1 − pr + E[|T ′ \ T |].

It remains to estimate E[|T ′ \T |]. Note that T ′ \T is a set of base facets incident to xr. It is also a
collection of facets of the hull with xr as a vertex over the insertion sequence xr, x1, · · · , xr−1. To
count these base facets, we count the expected number that appear when xj is inserted, for j ≤ r.
Let R′j = Rj ∪{xr}. For each base facet f ∈ T ′, either f is a facet of CH(R′d−1), or there is exactly
one j ≥ d such that f is a facet of CH(R′j) and xj is incident to f . A base facet in T ′ \ T is also
incident to xr, and so for given j the number of base facets we count is the expected number of
facets of CH(R′j) incident to xr and xj . Since each facet of CH(R′j) is incident to

(
d
2

)
ordered pair

of vertices, the expected number of facets incident to random pair of vertices in R′j like xr and xj

is
(
d
2

)
E[CH(R′j)]/

(
j+1
2

)
. Therefore,

E[|T ′ \ T |] = fd +
∑

d≤j≤r

(
d

2

)
E[CH(R′j)]/

(
j + 1

2

)
.

Using this value of E[|T ′ \ T |] in the previous expression, we have

E[X] = pr−1 − pr + fd +
∑

d≤j≤r

(
d

2

)
E[CH(R′j)]/

(
j + 1

2

)
.

Since R′j is a random subset of S, E[CH(R′j)] = fj+1, and a bit of rearranging gives the result.

When d = 3, the expected search time is O(1)
∑

1≤j≤r 1/j = O(log r). This means the expected
total time to build CH(S) is O(n log n), which is optimal for arbitrary point sets.
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