
1

University of Connecticut

Computer Science and Engineering Department

CSE 6512 Randomization in Computing

Spring 2016

Randomized and Deterministic Primality Testing

Proposal of Course Project

Abdullah Alenizi, Dina Abdelhafiz

Email :{abdullah.alenizi@uconn.edu, dina.abdelhafiz@uconn.edu}

Supervised by

Prof :-Sanguthevar Rajasekaran

mailto:abdullah.alenizi@uconn.edu
mailto:dina.abdelhafiz@uconn.edu

2

Contents

Abstract .. 4

1. Problem Definition .. 5

2. Introduction .. 5

3. Characteristics of Primality Testing Algorithms .. 7

4. Existing Primality Testing Algorithms .. 8

4.1. Sieve of Eratosthenes ... 9

4.2. Fermat’s Theorem .. 9

4.3. Miller-Rabin Algorithm ... 10

4.4. AKS Algorithm .. 13

4.4.1. Complexity analysis of AKS algorithm .. 15

4.5. Modified AKS V3 Algorithm .. 16

4.5.1. Time Complexity analysis for modified AKS V3 .. 17

5. Implementation ... 18

5.1. Hardware:... 18

5.2. Software: .. 20

5.3. Usage: ... 22

5.4. Method of testing: ... 22

6. Conclusion .. 26

References .. 26

Appendix A: ... 28

Appendix B .. 40

3

Table of figures
Figure 1 the specification of the virtual machine. .. 19

Figure 2 the specification of the virtual machine ... 19

Figure 3 shows the result of “top” command after starting the test. .. 20

Figure 4 shows a screen shots of the bash scripts: ... 21

Figure 5 shows a screen shots of the bash scripts: ... 21

Figure 6 shows a comparison between AKS & Miller-Rabin for 1000 random prime numbers 9 digits each. . 23

Figure 7 testing 100 numbers 50 digit each. .. 23

Figure 8 we tested 5000 digit 100 numbers. .. 24

Figure 9 shows random 5000 digit numbers with AKS method. .. 25

4

Abstract

The aim of this project is to implement a very widely studied problem of

Mathematics primality testing as efficiently as possible. There currently exist many

different primality tests, each with their distinct advantages and disadvantages. These tests

fall into two general categories, probabilistic and deterministic.

Probabilistic algorithms determine with a certain probability that a number is

prime, while deterministic algorithms prove whether a number is prime or not.

Probabilistic algorithms are fast but contain error. Deterministic algorithms are much

slower but produce proofs of correctness with no potential for error. Furthermore, some

deterministic algorithms don't have proven upper bounds on their run time complexities,

relying on heuristics.

In saying so, our main focus is to implement one major primality tests in each

category and compare their primality test results. The first Algorithm is the Miller–Rabin

test, which is widely used probabilistic primality test. The second test is a breakthrough

achieved in 2002 by Agrawal, Kayal and Saxena (AKS) they presented unconditional

deterministic polynomial-time algorithm that determines whether an input number is

prime or composite.

5

1. Problem Definition

A prime number is a positive integer p having exactly two positive divisors, 1 and p.

while a composite number is a positive integer n > 1 which is not prime. In course of the

project, we want to explore the fastest possible way to determine whether a number is

prime or not, AKS[1], Miller Rabin [2] algorithms will definitely be our main focus area.

Primality test’s output is binary: either 1: PRIME or 0: COMPOSITE.

2. Introduction

Prime numbers are of fundamental importance in mathematics in general, and

number theory in particular. So it is of great interest to study different properties of prime

numbers. Of special interest are those properties that allow one to determine efficiently if a

number is prime. Such efficient tests are also useful in practice: a number of cryptographic

protocols need large prime numbers and is a very useful in the Pattern Recognition. For

example, Prime numbers are used extensively in a broad spectrum of fields like the

following:

 Public Key Cryptography

With a pair public and private keys generated using prime numbers, cryptographic

algorithms generate cipher text from plain text and vice versa.

Plaintext = (𝐶𝑦𝑝ℎ𝑒𝑟 𝑡𝑒𝑥𝑡𝑒) mod k

Where, e is a product of two large primes p and q and k is the public key.

6

 Pseudo Random Number Generation

Recurrence of the form:

Zk +1 = (a* Zk + r) mod k

Where, r and k are relatively prime, known as Linear Congruential Generator Algorithm is

used to generate pseudo random numbers.

 Modular Arithmetic

Hash functions are a good example of use of prime numbers for modular arithmetic.

ha,b(x) = [(ax + b) mod n] mod k

Where, n is a prime number

The search for a polynomial time deterministic algorithm for primality testing has been

an open problem for a long time. Consequently, many researchers have provided various

algorithms. There are some very efficient algorithms such as the Solvay - Strassen [3] or

Miller Rabin algorithm [2]. They are termed as “probabilistic” polynomial time primality

testing algorithms. The term probabilistic implies that they can make mistakes some times.

In 1983, Adleman, Pomerance, and Rumely [4] achieved a major breakthrough by giving a

deterministic algorithm that runs in (logn)O(log log log n) time, though correctness proofs

of this deterministic algorithm is very complex.

It was finally proved by M. Agrawal, N. Kayal and N. Saxena that the set of primes is in

the complexity class P. The name of this algorithm is called AKS Algorithm[1], [5]. They

named after these three inventors. For any given integer n, the AKS algorithm can

determine the number n is prime number or not in the running time of O(log12 n), while the

best deterministic algorithm known before has polynomial time complexity. The AKS

Algorithm is based on the de randomization of a polynomial identity testing. It includes

7

many iterations of polynomial modular exponentiation. Since the algorithm has been

presented many efforts are made to implement the algorithm. The major challenge is to

implement the congruence, which is the most time consuming step in the algorithm. Most

of the efforts are focused on speeding up this congruence check.

3. Characteristics of Primality Testing Algorithms

Existing algorithms to test for primality of a number can be categorized as probabilistic

and deterministic. While probabilistic algorithms could result in false positives i.e.,

determining a composite number as prime, they do not produce false negatives i.e.,

determining a prime number as composite. The probability of a false positive is quite small

for numbers that are not very large. Deterministic algorithms, however, compute the

primality or compositeness of a number correctly every time.

 Specificity VS. Generality

There exist extremely fast primality tests such as - the Lucas–Lehmer test [6] for Mersenne

numbers, and Pepin’s test [7] for Fermat’s number. Though fast, the tests are specific for a

small subset of numbers.

 Probabilistic VS. Deterministic

Deterministic algorithms such as cyclotomy test have a running time that can be proven

to be O((logn)c logloglogn)[4]. Determinism is a necessary characteristic for a primality

testing algorithm. Nonetheless, probabilistic algorithm are so much faster than

deterministic ones that, one often finds himself incorporating a probabilistic algorithms in

his primality tester. Low probability of false negatives, zero false positives and ability to

repeat the test for a given input are some of the reasons why.

8

 Polynomial Vs. Non-Polynomial

The choice between a polynomial algorithms over a non-polynomial algorithm, though

glaringly obvious, needs significant consideration. An algorithm with a polynomial running

time is one whose running time can be expressed a polynomial of the length of the input,

and hence the number bits in it. This however, does not mean they are the fastest solutions

around. Non-polynomial algorithms, such as Fermat’s Theorem , is deterministic but this

test requires a partial factorization of n¡1 the running time is still quite slow in the worst

case. Faster algorithms like the probabilistic Miller-Rabin Test runs in polynomial time

over all inputs, but its correctness depends on the truth of the yet unproven generalization

of the Reimann hypothesis[2]. And lastly the AKS algorithm – both polynomial and

deterministic can be painfully slow for smaller inputs [1], [5].

In this project we are concentrating on implementing of the AKS algorithm and Miller

Rabin Algorithm and their run time measurements and to discover any improvement

during the development process.

4. Existing Primality Testing Algorithms

Abundant and continuous research is being conducted to analyze the unique

characteristic of natural numbers - primality. Based on the application, prime number

generators target speed, correctness and polynomial runtime.

9

4.1. Sieve of Eratosthenes

Named after the ancient Greek mathematician, Eratosthenes of Cyrene, this algorithm is

claimed to be the oldest known algorithm to generate prime numbers, originating around

220 B.C. E. The sieve literally "sieves out" every second number after two – the smallest

prime – (or multiples of two), then moves to the next available (3) and continues to "sieve

out" every multiple of 3 and so on. This algorithm is still important today in number

research theory [9] and is found to be the most efficient method to find all small primes

(less than 10 million) [8]–[10]

Algorithm1 Sieve of Eratosthenes

1: Create a list of consecutive integers from 2 to n : (2,3, 4,,n).

2: p ←2

3: Compute integral multiples of p and mark every number strictly greater than p in the list.

4: Find the first number greater than p in the list that is not marked

5: Let p equal this number (the next prime).

6: If there are no more numbers marked in the list, stop. Else, repeat step 3.

4.2. Fermat’s Theorem

Pierre de Fermat stated his theorem on October 18, 1640, as "p divides ap-1 -1 whenever p

is prime and a is coprime to p"

This algorithm so elegantly states a fact of number theory. This special property stated by

Fermat was a stepping stone for researchers around the world to produce a polynomial

time Algorithm for primality testing [11].Mathematically, Fermat’s theorem can be written

as,

10

ap ´ ≡1 mod p

Using this hypothesis, we can modify the Sieve of Eratosthenes and reduce its running time

to a mere polynomial of the input n.

Algorithm2 Fermat’s Test

1: for i = 2 to n do

2: if n is of the form i n ≡1 mod n then

3: return false

4: end if

5: end for

6: return true

In 1910, Robert Carmichael [12]found the first smallest number 561 that doesn’t obey this

rule. He went on define these numbers as "a composite positive integer n which satisfies

the congruence

bn-1 ≡ 1mod n

For all integers b which are relatively prime to n . These numbers are pseudo-prime or

probably-prime [13]and are known as Carmichael Numbers.

4.3. Miller-Rabin Algorithm

Miller–Rabin primality test is an algorithm which determines whether a given number is

prime deterministically[2]. Its determinism, however relies on the unproven generalized

Riemann hypothesis (GRH). The original version proposed by Gary L. Miller, in 1975, is

deterministic based on GRH. Michael O. Rabin modified it to obtain an unconditional

11

probabilistic algorithm. The Miller–Rabin test is based on the claim that if we can find an a

such that

ad≠1 mod n

and

𝑎2𝑟𝑑 ≠ −1 mod 𝑛 for all 0≤r ≤s-1

Then n is not prime. The algorithm for Miller-Rabin Test is given below.

Algorithm3 Miller-Rabin Test

Input: n > 3, an odd integer to be tested for primality;

Input: k, a parameter that determines the accuracy of the test

Output: composite if n is composite, otherwise probably prime

write n -1 as 𝑎𝑠 . 𝑑 with d odd by factoring powers of 2 from n-1

 loop

repeat k times

pick a random integer a in the range [4,n ¡2]

x ← ad mod n

if x = 1 or x = n-1 then

 do next loop

 end if

for r =1 to s-1 do

x ← x2 mod n

if x= 1 then

 return COMPOSITE

12

end if

if x=n-1 then

do next loop

 end if

end for

return COMPOSITE

end loop

return PROBABLY PRIME

4.3.1. Complexity Miller-Rabin Test

The running time of this algorithm is O(k log3 n), where k is the number of different

values of a we test; hence this is an efficient, polynomial-time algorithm. The probability of

getting a correct result improves with the number of bases a we test with. For any odd

composite n, at least ¾ of the bases a are witnesses for the compositeness of n. If n is

composite, then the Miller-Rabin test declares n probably prime with at most 4-k

probability[2]. The error bound of Miller-Rabin is 4-1 = 25% in the worst case. The

probability of a false negative of Solovay-Strassen [3] test is 2-k and hence its error bound is

½.

4.3.2. Deterministic Variant of Miller-Rabin Test

Miller-Rabin can be made deterministic by trying all possible a below a certain limit i.e. The

subset of numbers containing the witness to test for the compositeness of n must be

present in the set of numbers less than O((logn)2) as noted by Miller. The constant of Big-

13

oh notation was later reduced to 2 by Bach. This reduces the condition of primality testing

to try out all possible a’s between [2,min(n -1, 2(logn)2)].

TIME COMPLEXITY The running time of this algorithm is Õ((logn)4). Pomerance, Selfridge

And Wagstaff and Jaeschke [14] have verified that when the number n is small (of the order

of 1015,it is not necessary to try out all a< 2(logn)2. This drastically improves the efficiency

of the algorithm.

4.4. AKS Algorithm

AKS Algorithm Original This algorithm was first published in August 2002 by three

India computer scientists named M. Agrawal, N. Kayal, and N. Saxena. This was first time in

the history that to determine a number whether or not a prime in deterministic polynomial

time complexity[1]. Main characteristics of the algorithm include -

 General: The algorithm verified the primality of any general number, unlike the

Lucas-Lehmer test[6], Pépin Test[7].

 Polynomial: The maximum running time of the algorithm can be expressed as a

polynomial over the number of digits in the input to be tested unlike the cyclotomy

test (APR).

 Deterministic: The algorithm is guaranteed to distinguish between primes and

composites unlike Miller-Rabin test.

 Unconditional: The correctness of AKS is not based on any subsidiary unproven

hypothesis unlike the Miller test.

The AKS Algorithm can be explained through 4 theorems:

Theorem 1. Extended Fermat’s Theorem

An integer n(¸ 2) is prime if and only if the polynomial congruence relation

14

((x − a) n ≡ x n − a(mod n)

Holds for all integers a coprime to n

Theorem 2. AKS Theorem

Suppose that for all

1≤a, r≤ ·O(logO(1) n),

Theorem 1 holds, and a is coprime to n. Then n is either prime, or a power of a prime.

Theorem 3. AKS Theorem – Key Step

Let r be cop rime to n, and the residues (ni mod r) for 1≤i ≤ log2 n are distinct. Suppose

that for all 1 ≤a ≤O(r logO(1)n) and theorem 3.1 holds, and a is cop rime to n, then n is

either a prime or a power of a prime.

Theorem 4. Existence of good r

There exists r =O(logO(1)n) coprimes to n, such that n has order greater than log22n in

multiplicative group (Z/rZ)£.

The AKS Algorithm can be written in three main steps and they are listed below:

a) Perfect power checking the input n

b) Find r, q=LargestPrimeFactor(r) that q ≥ 4√𝑟 logn & 𝑛
𝑟−1

𝑞 ≠ 1(𝑚𝑜𝑑 𝑟)

c) a=1 to 2 √𝑟 log n , check (x − a) 𝑛 ≠ x 𝑛 − 𝑎(𝑚𝑜𝑑 x 𝑟 − 1, 𝑛)

The most time consuming step is at the last step of the for loop to compute the congruence

modulo. We will discuss its time complexity in the next section just below the algorithm.

The algorithm is obtained from the ‘PRIMES is in P’ paper [1].

15

Algorithm4 AKS

Input: Integer n >1

1. if (n is of the form ab ,b > 1) output COMPOSITE;

2. r = 2;

3. while (r < n) {

4. if (gcd(n, r ≠ 1) output COMPOSITE;

5. if (r is prime)

6. let q be the largest prime factor of r −1;

7. if (q ≥ 4√𝑟 logn & 𝑛
𝑟−1

𝑞 ≠ 1(𝑚𝑜𝑑 𝑟))

8. break;

9. r ← r +1;

10. }

11. for a = 1 to 2√𝑟 log n

12. if (x − a) 𝑛 ≠ x 𝑛 − 𝑎(𝑚𝑜𝑑 x 𝑟 − 1, 𝑛) output COMPOSITE;

13. Output PRIME;

4.4.1. Complexity analysis of AKS algorithm

Below are the three main steps required in the AKS Algorithm:

a. Perfect power checking the input n

b. Find r, q=LargestPrimeFactor(r) that q ≥ 4√𝑟 logn & 𝑛
𝑟−1

𝑞 ≠ 1(𝑚𝑜𝑑 𝑟)

c. a=1 to 2 √𝑟 log n , check (x − a) 𝑛 ≠ x 𝑛 − 𝑎(𝑚𝑜𝑑 x 𝑟 − 1, 𝑛)

16

The first step of the algorithm takes asymptotic time Ο (log3 n).

And the while loop in step b makes O(log6 n) iterations.,

The for loop at last step takes asymptotic time r 3/2 log3 n = Ο (log12 n), The GCD can be

evaluated using Euclid’s Algorithm. This takes poly (log log r) steps. The check for primality

of r and finding the largest factor q can be done by within Ο(√𝑟poly log r) steps.

The total complexity of the while loop is Ο(r √𝑟poly(9n log r) = Ο log9n . Though more

efficient and sophisticated algorithm can be used but even a very straightforward and slow

implementation of these does not effect the time taken by the algorithm as most of the time

is spent in the painful congruence for loop from step 11 to 13.

The for loop iterates 2√𝑟 log n times, in one iteration of the loop, if repeated squaring

and multiplication is used then O(log n) multiplication and squaring of polynomials of

degree less than r are done. By using FFT for these polynomial and integer operations, a

single iteration takes Ο (r log2n) time. Hence the time taken by the for loop Ο (r log2n)

becomes the total complexity of the algorithm.

4.5. Modified AKS V3 Algorithm

The algorithm was published in 2004[5]. It has been improved from its original AKS

Algorithm. And its time complexity is faster than its original. This algorithm also has three

main steps to compute the input n. The algorithm listed below:

a) Perfect power checking the input n

b) Find r,Οr(n) ≥ 4log2n

c) a=1 to [2 √φ(r) logn] check (x − a) 𝑛 ≠ x 𝑛 − 𝑎(𝑚𝑜𝑑 x 𝑟 − 1, 𝑛)

17

The modified AKS Version algorithm also needs three main steps to determine the input

data. But there are some changes in the step 2 and 3, which increase it computation time.

Therefore, its time complexity is faster than original AKS Algorithm. The more detailed

time complexity analysis is stated after the algorithm below. The algorithm shows below is

modified AKS [5]:

Algorithm5 modified AKS

Input: Integer n >1

1. if (n = ab , for a ∈ N and b > 1) output COMPOSITE;

2. Find the smallest r such that Οr(n) ≥ 4log2n

3. If 1< (a, n) for some a ≤ r , output COMPOSITE.

4. If n ≤ r , output PRIME.

5. For a = [2 √φ(r) log 𝑛] do

If (x + a) 𝑛 ≠ x 𝑛 + 𝑎(𝑚𝑜𝑑 x 𝑟 − 1, 𝑛) , output COMPOSITE;

6. Output PRIME;

4.5.1. Time Complexity analysis for modified AKS V3

 In step 1, it is same as original AKS Algorithm, so it requires Ο (log3n) .

 In step 2, we find an r with Οr(n) ≥ 4log2n. This can be done by trying out successive

values of r and testing if nk ≠ 1 mod for every k ≤ 4log2n . For a particular r, this will

involve at most Ο(nlog2n) multiplications modulo r and so will take time O(log2 nlog r).

We know that only Ο (log5n) different r’s need to be tried. Thus the total time complexity

of step 2 is log 7n .

The third step involves computing GCD of r numbers. Each GCD computation takes time Ο(

log n) and therefore, the time complexity of this step is Ο(log n) = Ο (log 6n).

18

The time complexity of step 4 is just Ο(log n).

In step 5, we need to verify √φ(r) log 𝑛 equations. Each equation requires Ο(log n)

multiplications of degree r polynomials with coefficients of size Ο(log n) . So each equation

can be verified in time O(rlog2n) steps. Thus the time complexity of step 5 is

𝑂(𝑟√φ(r) 𝑙𝑜𝑔3 n= O(𝑟3/2𝑙𝑜𝑔3𝑛=O(𝑙𝑜𝑔10.5𝑛). This time dominates all the other and is

therefore the time complexity of the algorithm.

Variants of the AKS algorithm:A significant improvement to the initial AKS algorithm was

demonstrated in 2005. H.W. Lentsra, Jr. and C. Pomerance proved a variant of AKS could

run with a time complexity of Õ(log6(n)[4]).

5. Implementation

In this Implementation, we tried to test the execution time for AKS and Miller-Rabin

primality testing methods to see the difference in execution time.

5.1. Hardware:

In this project, we relied on the cloud to perform our tests. The reason is because in

some cases using a virtual machine would not have tasks other than the our scripts which

makes it more reliable when it comes to execution time. Another reason is that a virtual

machine can be left running the tests without worrying about it would updates, reboots,

sleeps, …etc. Figures [1:2] below shows the specification of the virtual machine:

19

Figure 1 the specification of the virtual machine.

Figure 2 the specification of the virtual machine

20

Figure 3 shows the result of “top” command after starting the test:

Figure 3 shows the result of “top” command after starting the test.

5.2. Software:

We used the implementation found in this repository: https://github.com/phillipm/ecpp-

aks-primality-proving.git in github. It was downloaded using this command:

root@ubuntu-512mb-nyc3-01:~# git clone https://github.com/phillipm/ecpp-aks-

primality-proving.git

After compiling it using “make”, we had two main executable files:

1. aks

2. miller-rabin

https://github.com/phillipm/ecpp-aks-primality-proving.git
https://github.com/phillipm/ecpp-aks-primality-proving.git
https://github.com/phillipm/ecpp-aks-primality-proving.git
https://github.com/phillipm/ecpp-aks-primality-proving.git

21

They are straightforward to use. Once the command is executed, the number can be

inputted through the terminal the result is outputted. The output is either 0 if the inputted

number is composite and 1 if the inputted number is prime.

For our requirements, we wrote two bash scripts that would execute the tests

automatically as well as calculating the execution time which was done by taking the

difference between the times before and after doing the test in milliseconds. Figure 4,5

show a screen shots of the bash scripts:

Figure 4 shows a screen shots of the bash scripts:

Figure 5 shows a screen shots of the bash scripts:

22

5.3. Usage:

 root@ubuntu-512mb-nyc3-01:~# bash aksTest.sh input.txt output.txt

 root@ubuntu-512mb-nyc3-01:~# bash miller

 -rabinTest.sh input.txt output.txt

5.4. Method of testing:

Measuring execution time for testing prime numbers:

We downloaded few lists of ONLY prime numbers from: https://primes.utm.edu . Then, we

had to sort them so that each number in a separate line which is required by the bash

script. From these lists we chose 1000 numbers randomly using the Linux command:

cat p50.txt | sort --random-sort | head -1000 > p50random.txt

After that we executed the bash scripts above and analyzed the output file using excel.

Figure 6 below shows a comparison between AKS & Miller-Rabin for 1000 random prime

numbers 9 digits each.

In this experiment the execution time was around 3ms in average for Miller-Rabin and

35ms for AKS as in table 1.

 Testing random prime numbers 9 digit each

Table 1 Testing random prime numbers 9 digit each for Miller-Rabin and AKS Alg.

Average Min Max

Miller-Rabin 2.748 2 8

AKS 35.644 22 86

https://primes.utm.edu/

23

Figure 6 shows a comparison between AKS & Miller-Rabin for 1000 random prime numbers 9 digits each.

Measuring execution time for testing random numbers

For this test we developed a short java program that outputs random numbers with the

required length. We chose that the least significant number would be odd to increase the

possibility that this number is prime. We used 50 digit 100 numbers and the result as

shown figure 7.

Testing random numbers 50 digit each

Figure 7 testing 100 numbers 50 digit each.

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

Ti
m

e
in

 m
ill

is
ec

o
n

d
s

Miller Rabin vs AKS

miller-rabin aks

0

10000

20000

30000

40000

0 20 40 60 80 100

Ti
m

e
in

 m
s

Miller Rabin vs AKS

MillerRabin AKS

24

 We clearly see that Miller Rabin in this case is not showing a big difference in execution

time than in the previous experiment. However, AKS is. The execution time has around

1000 times the previous one as in table 2.

Table 2 shows average execution times for both algorithms.

Testing random numbers 5000 digit each

Figure 8 we tested 5000 digit 100 numbers.

Average Min Max

Miller-Rabin 1683.55 1314 2458

 Average Min Max

Miller-Rabin 6.97 2 15

AKS 3634.57 7 34584

25

In this experiment we tested 5000 digit 100 numbers as in figure 8. Miller-Rabin showed

an average execution time around 1.5 seconds which about 100 times the previous result

(i.e 50 digit numbers).

However, figure 9 shows the result using the same random 5000 digit numbers with AKS

method. The execution time was too long that we had to abort it. It ranged between 5

minutes to 90 minutes per number.

Figure 9 shows random 5000 digit numbers with AKS method.

Average Min Max

Miller-Rabin 14.26 5.42 89.11

However, it is worth mentioning that the Miller-Rabin showed pretty closer results than

AKS. The highest execution time in Miller-Rabin was 2 times the lowest. AKS on the other

hand, the highest was 18 times the lowest.

0
10
20
30
40
50
60
70
80
90

100

-2 3 8 13 18 23 28

Ti
m

e
in

 m
in

number

AKS

26

Finally, there is no doubt that Miller-Rabin is much faster in execution. However, AKS gives

fast results for most composite number although they are not as fast as Miller Rabin.

6. Conclusion

Probabilistic algorithms could result in false positives i.e., determining a composite

number as prime, they do not produce false negatives i.e., determining a prime number as

composite. The probability of a false positive is quite small for numbers that are not very

large. Deterministic algorithms, however, compute the primality or compositeness of a

number correctly every time.

References

[1] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” 2002 PRIMES is in P , Preprint, IIT Kanpur,

August 2002. (http://www.cse.iitk.ac.in/news/primality.pdf)...

[2] M. O. Rabin, “Probabilistic algorithm for testing primality,” J. number theory, vol. 12, no. 1, pp. 128–

138, 1980.

[3] R. Solovay and V. Strassen, “A Fast Monte-Carlo Test for Primality,” SIAM J. Comput., vol. 6, no. 1, pp.

84–85, Mar. 1977.

[4] L. M. Adleman, C. Pomerance, and R. S. Rumely, “On Distinguishing Prime Numbers from Composite

Numbers,” Ann. Math., vol. 117, no. 1, p. 173, Jan. 1983.

[5] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Ann. Math., vol. 160, pp. 781–793, 2004.

[6] E. W. Weisstein, “Lucas-Lehmer Test.” Wolfram Research, Inc.

[7] “Pépin’s test - Wikipedia, the free encyclopedia.” [Online]. Available:

https://en.wikipedia.org/wiki/P%C3%A9pin%27s_test. [Accessed: 02-May-2016].

[8] C. Bays and R. H. Hudson, “The segmented sieve of eratosthenes and primes in arithmetic

progressions to 1012,” BIT, vol. 17, no. 2, pp. 121–127, Jun. 1977.

27

[9] T. A. Peng, “One Million Primes Through the Sieve,” BYTE, pp. 243 – 244, 1985.

[10] D. Gries and J. Misra, “A linear sieve algorithm for finding prime numbers,” Commun. ACM, vol. 21, no.

12, pp. 999–1003, Dec. 1978.

[11] “Fermat’s little theorem - Encyclopedia of Mathematics.” [Online]. Available:

https://www.encyclopediaofmath.org/index.php/Fermat_little_theorem. [Accessed: 02-May-2016].

[12] R. D. Carmichael, “Note on a new number theory function,” Bull. Am. Math. Soc., vol. 16, no. 5, pp. 232–

238, 1910.

[13] “http://en.wikipedia.org/wiki/Carmichael_number.” .

[14] C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, “The pseudoprimes to $25·10\sp{9}$,” Math. Comput.,

vol. 35, no. 151, pp. 1003–1003, Sep. 1980.

[15] https://github.com/phillipm/ecpp-aks-primality-proving.git

[16] https://cloud.digitalocean.com/droplets

https://github.com/phillipm/ecpp-aks-primality-proving.git
https://cloud.digitalocean.com/droplets

28

 Appendix A:

Miller Rabin

#include "miller-rabin.h"
#include <gmp.h>
#define COMPOSITE 0
#define PRIME 1
#define DEFINITELY_PRIME 2
#define UNDECIDED 3

#define DEFINITELY_PRIME_LIMIT 1000000

/**
 * Set s and d such that 2 ^ s * d is equal to the given n.
 */
void factor_powers_of_2 (mpz_t s, mpz_t d, const mpz_t n) {
 mpz_set_ui(s, 0);
 mpz_set(d, n);
 while (mpz_divisible_ui_p(d, 2)) {
 mpz_add_ui(s, s, 1);
 mpz_divexact_ui(d, d, 2);
 }
}

/**
 * If the number is small enough, perform a sieve test, testing all
 * numbers to up to the sqrt of n to see if they are factors.
 */
int is_definitely_prime(const mpz_t n) {
 if (mpz_cmp_ui(n, DEFINITELY_PRIME_LIMIT) < 0) {
 mpz_t i, limit;
 mpz_init(i);
 mpz_init(limit);
 mpz_sqrt(limit, n);
 for (mpz_set_ui(i, 2); mpz_cmp(i, limit) <= 0; mpz_add_ui(i, i, 1)) {
 if (mpz_divisible_p(n, i)) {
 return COMPOSITE;
 }
 }
 mpz_clear(i);
 mpz_clear(limit);
 return DEFINITELY_PRIME;
 }

29

 return UNDECIDED;
}

/**
 * Run the Miller-Rabin primality test k times. If the number is composite,
 * 0 will be returned. If the number is probably prime, 1 will be returned with
 * a probability of error of 1 / 4 ^ k.
 */
int miller_rabin_is_prime(const mpz_t n, unsigned int k) {
 int retval, i;
 mpz_t s, d, a, x, r, n_minus_one, n_minus_four;

 // Check for simple cases
 if (mpz_cmp_ui(n, 2) == 0 || mpz_cmp_ui(n, 3) == 0)
 return DEFINITELY_PRIME;
 if (mpz_cmp_ui(n, 1) <= 0 || mpz_divisible_ui_p(n, 2))
 return COMPOSITE;

 // Perform a sieve test if possible
 retval = is_definitely_prime(n);
 if (retval == DEFINITELY_PRIME || retval == COMPOSITE)
 return retval;

 gmp_randstate_t state;
 gmp_randinit_default(state);

 mpz_init(s);
 mpz_init(d);
 mpz_init(a);
 mpz_init(x);
 mpz_init(r);
 mpz_init(n_minus_one);
 mpz_init(n_minus_four);

 mpz_sub_ui(n_minus_one, n, 1);
 mpz_sub_ui(n_minus_four, n, 4);

 // Compute s and d
 factor_powers_of_2(s, d, n_minus_one);

 retval = PRIME;
 for (i = 0; i < k; i++) {
 // Pick a random a in the range [2, n - 2]
 mpz_urandomm(a, state, n_minus_four);
 mpz_add_ui(a, a, 2);
 // Set x to a ^ d % n

30

 mpz_powm(x, a, d, n);
 // If x is 1 or n -1 then get another random number
 if (mpz_cmp_ui(x, 1) == 0 || mpz_cmp(x, n_minus_one) == 0) {
 continue;
 }

 // Test values of r from 1 to s - 1
 for (mpz_set_ui(r, 1); mpz_cmp(r, s) < 0; mpz_add_ui(r, r, 1)) {
 // Set x to x ^ 2 % n
 mpz_powm_ui(x, x, 2, n);
 // If x is 1 then the number is composite
 if (mpz_cmp_ui(x, 1) == 0) {
 retval = COMPOSITE;
 break;
 }
 // If x is n - 1 we need to get another random number
 if (mpz_cmp(x, n_minus_one) == 0) {
 retval = UNDECIDED;
 break;
 }
 }

 if (retval != UNDECIDED) {
 retval = COMPOSITE;
 break;
 }
 }
 if (retval == UNDECIDED) {
 retval = PRIME;
 }

 gmp_randclear(state);

 mpz_clear(s);
 mpz_clear(d);
 mpz_clear(a);
 mpz_clear(x);
 mpz_clear(r);
 mpz_clear(n_minus_one);
 mpz_clear(n_minus_four);

 return retval;
}

31

AKS

#include "aks.h"
#include <gmp.h>
#include <mpfr.h>
#include <stdlib.h>
#define FALSE 0
#define TRUE 1
#define COMPOSITE 0
#define PRIME 1

int aks_debug = 0;

/**
 * Wrapper function to find the log of a number of type mpz_t.
 */
void compute_logn(mpz_t rop, mpz_t n) {
 mpfr_t tmp;
 mpfr_init(tmp);
 mpfr_set_z(tmp, n, MPFR_RNDN);
 mpfr_log(tmp, tmp, MPFR_RNDN);
 mpfr_get_z(rop, tmp, MPFR_RNDN);
 mpfr_clear(tmp);
}

/**
 * Wrapper function to find the square of the log of a number of type mpz_t.
 */
void compute_logn2(mpz_t rop, mpz_t n) {
 mpfr_t tmp;
 mpfr_init(tmp);

 mpfr_set_z(tmp, n, MPFR_RNDN);
 mpfr_log(tmp, tmp, MPFR_RNDA);
 mpfr_pow_ui(tmp, tmp, 2, MPFR_RNDA);
 mpfr_ceil(tmp, tmp);

 mpfr_get_z(rop, tmp, MPFR_RNDA);
 mpfr_clear(tmp);
}

/**
 * Finds the smallest r such that order of the a modula r which is the
 * smallest number k such that n ^ k = 1 (mod r) is greater than log(n) ^ 2.
 */
void find_smallest_r(mpz_t r, mpz_t n) {

32

 mpz_t logn2, k, tmp;
 mpz_init(logn2);
 mpz_init(k);
 mpz_init(tmp);

 // Compute log(n) ^ 2 in order to do the comparisons
 compute_logn2(logn2, n);
 // R must be at least log(n) ^ 2
 mpz_set(r, logn2);

 int found_r = FALSE;
 while (!found_r) {
 found_r = TRUE;
 // Check several values of k from 1 up to log(n) ^ 2 to find one that satisfies the equality
 for (mpz_set_ui(k, 1); mpz_cmp(k, logn2) <= 0; mpz_add_ui(k, k, 1)) {
 // Compute n ^ k % r
 mpz_powm(tmp, n, k, r);
 // If it is not equal to 1 than the equality n ^ k = 1 (mod r) does not hold
 // and we must find test a different value of k
 if (mpz_cmp_ui(tmp, 1) == 0) {
 found_r = FALSE;
 break;
 }
 }
 // All possible values of k were checked so we must start looking for a new r
 if (!found_r) {
 mpz_add_ui(r, r, 1);
 }
 }

 mpz_clear(logn2);
 mpz_clear(k);
 mpz_clear(tmp);
}

/**
 * Return true if there exists an a such that 1 < gcd(a, n) < n for some a <= r.
 */
int check_a_exists(mpz_t n, mpz_t r) {
 mpz_t a, gcd;
 mpz_init(a);
 mpz_init(gcd);

 int exists = FALSE;

 // Simply iterate for values of a from 1 to r and see if equations hold for the gcd of a and n

33

 for (mpz_set_ui(a, 1); mpz_cmp(a, r) <= 0; mpz_add_ui(a, a, 1)) {
 mpz_gcd(gcd, a, n);
 if (mpz_cmp_ui(gcd, 1) > 0 && mpz_cmp(gcd, n) < 0) {
 exists = TRUE;
 break;
 }
 }

 mpz_clear(a);
 mpz_clear(gcd);

 return exists;
}

/**
 * Return the totient of op, which is the count of numbers less than op which are coprime to
op.
 */
void totient(mpz_t rop, mpz_t op) {
 mpz_t i, gcd;
 mpz_init(i);
 mpz_init(gcd);
 mpz_set_ui(rop, 0);

 // Simply iterate through all values from op to 1 and see if the gcd of that number and op
is 1.
 // If it is then it is coprime and added to the totient count.
 for (mpz_set(i, op); mpz_cmp_ui(i, 0) != 0; mpz_sub_ui(i, i, 1)) {
 mpz_gcd(gcd, i, op);
 if (mpz_cmp_ui(gcd, 1) == 0) {
 mpz_add_ui(rop, rop, 1);
 }
 }

 mpz_clear(i);
 mpz_clear(gcd);
}

/**
 * Returns sqrt(totient(r)) * log(n) which is used by step 5.
 */
void compute_upper_limit(mpz_t rop, mpz_t r, mpz_t n) {
 mpz_t tot, logn;
 mpz_init(tot);
 mpz_init(logn);

34

 totient(tot, r);
 if (aks_debug) gmp_printf("tot=%Zd\n", tot);
 mpz_sqrt(tot, tot);

 compute_logn(logn, n);
 mpz_mul(rop, tot, logn);

 mpz_clear(tot);
 mpz_clear(logn);
}

/**
 * Multiplies two polynomials with appropriate mod where their coefficients are indexed
into the array.
 */
void polymul(mpz_t* rop, mpz_t* op1, unsigned int len1, mpz_t* op2, unsigned int len2,
mpz_t n) {
 int i, j, t;

 for (i = 0; i < len1; i++) {
 for (j = 0; j < len2; j++) {
 t = (i + j) % len1;
 mpz_addmul(rop[t], op1[i], op2[j]);
 mpz_mod(rop[t], rop[t], n);
 }
 }
}

/**
 * Allocates an array where each element represents a coeffecient of the polynomial.
 */
mpz_t* init_poly(unsigned int terms) {
 int i;
 mpz_t* poly = (mpz_t*) malloc(sizeof(mpz_t) * terms);
 for (i = 0; i < terms; i++) {
 mpz_init(poly[i]);
 }
 return poly;
}

/**
 * Frees the array and clears each element in the array.
 */
void clear_poly(mpz_t* poly, unsigned int terms) {
 int i;
 for (i = 0; i < terms; i++) {

35

 mpz_clear(poly[i]);
 }
 free(poly);
}

/**
 * Test if (X + a) ^ n != X ^ n + a (mod X ^ r - 1,n)
 */
int check_poly(mpz_t n, mpz_t a, mpz_t r) {
 unsigned int i, terms, equality_holds;

 mpz_t tmp, neg_a, loop;
 mpz_init(tmp);
 mpz_init(neg_a);
 mpz_init(loop);

 terms = mpz_get_ui(r) + 1;
 mpz_t* poly = init_poly(terms);
 mpz_t* ptmp = init_poly(terms);
 mpz_t* stmp;

 mpz_mul_ui(neg_a, a, -1);

 mpz_set(poly[0], neg_a);
 mpz_set_ui(poly[1], 1);

 for (mpz_set_ui(loop, 2); mpz_cmp(loop, n) <= 0; mpz_mul(loop, loop, loop)) {
 polymul(ptmp, poly, terms, poly, terms, n);
 stmp = poly;
 poly = ptmp;
 ptmp = stmp;
 }

 mpz_t* xMinusA = init_poly(2);
 mpz_set(ptmp[0], neg_a);
 mpz_set_ui(ptmp[1], 1);
 for (; mpz_cmp(loop, n) <= 0; mpz_add_ui(loop, loop, 1)) {
 polymul(ptmp, poly, terms, xMinusA, 2, n);
 stmp = poly;
 poly = ptmp;
 ptmp = stmp;
 }
 clear_poly(xMinusA, 2);

 equality_holds = TRUE;
 if (mpz_cmp(poly[0], neg_a) != 0 || mpz_cmp_ui(poly[terms - 1], 1) != 0) {

36

 equality_holds = FALSE;
 }
 else {
 for (i = 1; i < terms - 1; i++) {
 if (mpz_cmp_ui(poly[i], 0) != 0) {
 equality_holds = FALSE;
 break;
 }
 }
 }

 clear_poly(poly, terms);
 clear_poly(ptmp, terms);

 mpz_clear(tmp);
 mpz_clear(neg_a);
 mpz_clear(loop);

 return equality_holds;
}

/**
 * Run step 5 of the AKS algorithm.
 */
int check_polys(mpz_t r, mpz_t n) {
 mpz_t a, lim;
 mpz_init(a);
 mpz_init(lim);

 int status = PRIME;
 if (aks_debug) gmp_printf("computing upper limit\n");
 compute_upper_limit(lim, r, n);
 if (aks_debug) gmp_printf("lim=%Zd\n", lim);
 // For values of a from 1 to sqrt(totient(r)) * log(n)
 for (mpz_set_ui(a, 1); mpz_cmp(a, lim) <= 0; mpz_add_ui(a, a, 1)) {
 if (!check_poly(n, a, r)) {
 status = COMPOSITE;
 break;
 }
 }

 mpz_clear(a);
 mpz_clear(lim);

 return status;
}

37

int aks_is_prime(mpz_t n) {

 // Peform simple checks before running the AKS algorithm
 if (mpz_cmp_ui(n, 2) == 0) {
 return PRIME;
 }

 if (mpz_cmp_ui(n, 1) <= 0 || mpz_divisible_ui_p(n, 2)) {
 return COMPOSITE;
 }

 // Step 1: Check if n is a perfect power, meaning n = a ^ b where a is a natural number and
b > 1
 if (mpz_perfect_power_p(n)) {
 return COMPOSITE;
 }

 // Step 2: Find the smallest r such that or(n) > log(n) ^ 2
 mpz_t r;
 mpz_init(r);
 find_smallest_r(r, n);

 if (aks_debug) gmp_printf("r=%Zd\n", r);

 // Step 3: Check if there exists an a <= r such that 1 < (a,n) < n
 if (check_a_exists(n, r)) {
 mpz_clear(r);
 return COMPOSITE;
 }

 if (aks_debug) gmp_printf("a does not exist\n");

 // Step 4: Check if n <= r
 if (mpz_cmp(n, r) <= 0) {
 mpz_clear(r);
 return PRIME;
 }

 if (aks_debug) gmp_printf("checking polynomial equation\n");

 // Step 5
 if (check_polys(r, n)) {
 mpz_clear(r);
 return COMPOSITE;
 }

38

 mpz_clear(r);

 // Step 6
 return PRIME;
}

Prime Numbers

2637155093855448570938472380222706770724032300690222174268886576847799
3502106023033054133313527480707193900521496593412042151923156710669524
9539904735396139061088635385740995937345785513679594618961226387523617
0318795134273481432527070687247510614508784835081794376527418779967081
2728687941533655420783986217464273073452151853539860061889978438992120
0512721760392067642122784928177090842157844859789408286526992685913987
6177450902923782844336477175056440134903116960986898377982693474283025
2487656646413398123494571263273773332343627385186978077156118468120130
0492965994675324604818209093611917316894597113897100760536269910684681
0974806048375647698291140982545670981499914586671229511548772003754040
3890434090747607367175686736151151323727908304566954998750941416929683
8890299104566466816216720153900061518634563523592079034028443149663200
2205445885507584940654298624210671530604325387038782380914960598549899
0937113294715949033121664189746049555023910586310424353449126107093581
8337767469147954797743676159452115902380586067016649156812528874803647
6140345058263111084365983560977195316815903885523336333911086935479590
5423054162139177836170483660714885131032110587995635673029843471133728
3471109420076256839892602868551847798075630807160127986958780830317363
1811042642889713849373147632276540618659525259698517544219776178245902
9053180104435856117990241409768101484527497939373197617258939395030300
6953824814828568253596738055190162189783664953104304785033181349423903
242876247571673409022912327627

1912224376975798017412972537839234556299282436200249018470363668484368
4576558748040571261417728968644919375430791040965203039973879931669266
7906116208200303429177415541112738120688056158254584636768157378552709
1395182718711173909093104513223043359753949043793832660644364252586280
1830834492010007905848879513390820143862995442492735997910253406834165
8872193416031279796260516544906288466240671104651988665806233690286736
6151569921374200502469990256914624210967314960937749861238011914660550
7240320492976224459047399010708035928237897614340247350234823857826463
3591098744417667299359301835778151217129887784017029802499018933741097
9391967455653590464108500407238737221127606724167043454732630670650996
8570238429190702488473483121303594063013149525116210606474011566005508
2328671475511036495102429548358263069090603479481382373319600314932354

39

3349394181944505542087282285137833245753224608195638619296979668366223
2627735402634586861740259240751992513488752060495576026450958788554734
3667675075895807496506808035811082777326173051514056516820311381030512
1463418534382898604606472945560314910008629236906926568592697611713402
1629239369283061331454542091851568759298791297834212310171547602842391
8100381963933367041467658469410304410865365421186877470509895235622540
0813312877508759155028213852232008127949864768024395676162689065214049
7427366412687852400265007075698227867959496059743637403404635892003761

40

 Appendix B

5000 digit random odd number generator:

package primeTest;

import java.util.Random;

public class PrimeTest {

public static void main(String[] args) {

 // TODO Auto-generated method stub

 for(int j=0; j<100; j++){

 System.out.print(randomint(1,9,false));

 for(int i=0; i< 4998; i++){

 System.out.print(randomint(0,9,false));

 }

 System.out.println(randomint(1,9,true));

 }

 }

 //random.nextInt(max - min + 1) + min

 private static int randomint(int min, int max, boolean odd) {

 // TODO Auto-generated method stub

 int result;

 Random rn = new Random();

 result = min + rn.nextInt(max-min+1);

 if(odd){

 if(result % 2 == 0){

 result++;

 if(result > max){

 result = result - 2;

 }

 }

 }

 return result; }

}

