## CSE 6512 Randomization in Computing

Fall 2023, Homework 1, Due on September 28, 2023

1. Let $T$ be an ordered set and let $S_{1}$ be a random sample of $T$ of size $n^{2} 2^{m / 3}$. Sort $S_{1}$ and from the sorted list pick elements that are in positions $n^{2}, 2 n^{2}, \ldots,\left(2^{m / 3}-1\right) n^{2}$. Let this list be $S_{2}$. Keys in $S_{2}$ partition $T$ in the obvious way. Let $q$ be the maximum size of any of these parts. Show that

$$
\operatorname{Pr}\left[q>\left(1+n^{-1 / 3}\right)|T| / 2^{m / 3}\right]<2^{-c_{1} n}
$$

for some constant $c_{1}>0$ and that

$$
\left.\operatorname{Pr}\left[q<\left(1-n^{-1 / 3}\right)|T| / 2^{m / 3}\right]<2^{-c_{2} n}\right]
$$

for some constant $c_{2}>0$. Assume that $n^{4} 2^{m / 3}=o(|T|)$ and that $n^{2} 2^{m / 3}=o\left(|T|^{2 / 3}\right)$.
2. [Problem 7.2 from MR95.] Two rooted trees $T_{1}$ and $T_{2}$ are said to be isomorphic if there exists a one-to-one mapping $f$ from the vertices of $T_{1}$ to those of $T_{2}$ satisfying the following condition: for each internal vertex $v$ of $T_{1}$ with the children $v_{1}, \ldots, v_{k}$, the vertex $f(v)$ has as children exactly the vertices $f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{k}\right)$. Observe that no ordering is assumed on the children of any internal vertex. Devise an efficient randomized algorithm for testing the isomorphism of rooted trees and analyze the performance.
3. [Problem 7.10 from MR95]. Given a randomized algorithm for testing the existence of a perfect matching in a graph $G$, describe how you would actually construct such a matching. What is the run time of your algorithm if you use the testing algorithm described in class?
4. [Problem 7.13 from MR95]. Consider the two-dimensional version of the pattern matching problem. The text is an $n \times n$ Boolean matrix $X$ and the pattern is an $m \times m$ Boolean matrix $Y$. A pattern match occurs if $Y$ appears as a (contiguous) sub-matrix of $X$. To apply the randomized algorithm described in class, we can convert $Y$ into an $m^{2}$-bit vector using the row-major format. The possible occurrences of $Y$ in $X$ are the $m^{2}$-bit vectors $X(j)$ obtained by taking all $(n-m+1)^{2}$ sub-matrices of $X$ in a row-major form. It is clear that the algorithm discussed in class can be used in this case. Analyze the error probability and run time in this case.
5. [Problem 8.17 from MR95]. In defining a random leveling for a skip list, we sampled the elements from $L_{i}$ with probability $1 / 2$ to determine the next level $L_{i+1}$. Consider instead the skip list obtained by performing the sampling with probability $p$ (at each level), where $0<p<1$. (a) Determine the expectation of the number of levels $r$, and prove a high probability bound on $r$; (b) Determine as precisely as you can the expected cost of each operation in this skip list; and (c) Discuss the relationship between the choice of $p$ and the performance of the skip list in practice.
6. [Exercise 8.13 from MR95]. Assume for simplicity that $n=s$. Show that for $m=2^{\Omega(s)}$, there exist perfect hash families of size polynomial in $m$. (Hint: Use the probabilistic method.)
7. [Problem 8.22 from MR95]. In this problem we consider a weakening of the notion of 2-universal families of hash functions. Let $g(x)=x \bmod n$. For each $a \in Z_{p}$, define the function $f_{a}(x)=a x \bmod p$, and $h_{a}(x)=g\left(f_{a}(x)\right)$, and let $H=\left\{h_{a} \mid a \in Z_{p}, a \neq 0\right\}$. Show that $H$ is nearly-2-universal in that, for all $x \neq y, \delta(x, y, H) \leq \frac{2|H|}{n}$.

