CSE 4502/5717 Big Data Analytics Fall 2022; Homework 3 Solutions

1. (a) Note that for a pair of items to be frequent, it has to occur in at least one transaction. Thus the only two-itemsets we have to generate as candidates are the pairs of items we can generate from each transaction. As a result, the number of candidates is $O(n)$. For each such candidate we have to compute the support. Support for the candidates can be computed as described in class. In particular, we use a hash tree to store all the candidates. The expected size of each leaf in the hash tree is $O(1)$. Then, we do the following:
for each transaction T in DB do
for each pair $\left(i, i^{\prime}\right)$ of items in T do
Use the hash tree to increment of the support of $\left(i, i^{\prime}\right)$ by 1.
Output all the pairs of items that have a support of \geq minSupport.
It is clear that the above algorithm has an expected run time of $O(n)$.
(b) Note that if X is an itemset with k items, then we can form $2^{k}-2$ association rules using X. This in turn means that the total number of association rules we can form from a set I of d items is $\sum_{k=2}^{d}\binom{d}{k}\left(2^{k}-2\right)=\sum_{k=2}^{d}\binom{d}{k} 2^{k}-2 \sum_{k=2}^{d}\binom{d}{k}$ $=3^{d}-2 d-1-2\left(2^{d}-d-1\right)=3^{d}-2^{d+1}+1$.
2. Let the transactions in the database be $t_{1}, t_{2}, \ldots, t_{q}$. Note that any item in the database can be represented as an integer in the range $\left[1, n^{c}\right]$.
S is an empty sequence to begin with;
for $i=1$ to q do
for every item $a \in t_{i}$ do
Add a to the sequence S;
Sort S using the integer sorting algorithm;
Scan through the sorted sequence to count the support for each item and output those that have enough support.

Clearly, the above algorithm runs in $O(n)$ time.
3. The coefficients of the polynomial are given by $\binom{n}{i}, i=0,1, \ldots, n$.

Since $\binom{n}{i}=\binom{n}{i-1}(n-i+1) / i$, the coefficients can be computed in time $O(n)$.
FFT can be used to multiply two nth degree polynomials in $O(n \log n)$ time. We can compute the coefficients of $(1+x)^{n}$ by multiplying $(1+x)^{n / 2}$ and $(1+x)^{n / 2}$. If $T(n)$ is
the time needed to compute $(1+x)^{n}$, then, $T(n)=T(n / 2)+O(n \log n)$, which solves to $O(n \log n)$.
4. Let A be a Toeplitz matrix and B be an $n \times 1$ vector. Let's consider the multiplication of the lower triangular part of A (including the main diagonal elements) with B.
Let the elements of A be the following:

$$
\begin{aligned}
& a_{n, n}=a_{n-1, n-1}=a_{n-2, n-2}=\ldots=a_{2,2}=a_{1,1}=a_{1} \\
& a_{n, n-1}=a_{n-1, n-2}=a_{n-2, n-3}=\ldots=a_{2,1}=a_{2} \\
& a_{n, n-2}=a_{n-1, n-3}=a_{n-2, n-4}=\ldots=a_{3,1}=a_{3} \\
& \quad \vdots \\
& a_{n, 1}=a_{n}
\end{aligned}
$$

Let the elements of B be the following:
$b_{1,1}=b_{1}, b_{2,1}=b_{2}, \ldots, b_{n, 1}=b_{n}$
Multiplication of the lower triangular part of A with B gives the following:

$$
\left[\begin{array}{c}
a_{1} b_{1} \\
a_{2} b_{1}+a_{1} b_{2} \\
a_{3} b_{1}+a_{2} b_{2}+a_{1} b_{3} \\
\vdots
\end{array}\right]
$$

We can notice that the above is nothing but the multiplication of two polynomials $\left(a_{1}+a_{2} x+a_{3} x^{2}+\ldots\right)$ and $\left(b_{1}+b_{2} x+b_{3} x^{2}+\ldots\right)$.
Since the plolynomials can be multiplied in $O(n \log n)$ time, the matrices can also be multiplied in $O(n \log n)$ time. Multiplication of the upper triangular elements of A with B is symmetrical to the above and it would not affect the asymptotic complexity.
5. The loss function is $L\left(w_{1}, w_{2}\right)=\left(w_{2}-2\right)^{2}+\left(w_{1}-4\right)^{2}+\left(w_{1}+w_{2}-4\right)^{2}=2 w_{1}^{2}+2 w_{2}^{2}+$ $2 w_{1} w_{2}-16 w_{1}-12 w_{2}+28$. We want to have: $\frac{\partial L}{\partial w_{1}}=0$ and $\frac{\partial L}{\partial w_{2}}=0$.
$\frac{\partial L}{\partial w_{1}}=0$ implies that $2 w_{1}+w_{2}=8$ and $\frac{\partial L}{\partial w_{2}}=0$ implies that $w_{1}+2 w_{2}=6$. Solving these two equations, we get: $w_{1}=\frac{10}{3}$ and $w_{2}=\frac{4}{3}$.

