Name:

CSE 4502/5717 Big Data Analytics

Exam III; December 8, 2022

Note: You are supposed to give proofs to the time and processor bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. (17 points) Input is a database DB with n transactions from a set $I=\left\{i_{1}, i_{2}, \ldots, i_{d}\right\}$ of items. Assume that $d=O\left(n^{c}\right)$ for some constant c. It is known that each transaction in DB has $O(1)$ items. Input is also a threshold minSupport for the minimum support. Present an algorithm to find all the frequent 2 -itemsets. The worst case run time of your algorithm should be $O(n)$. (Hint: We can sort N integers in the range [1, $\left.N^{i}\right]$ in $O(N)$ time, where i is any constant.)
2. (17 points) Input is a database DB with n transactions from a set $I=\left\{i_{1}, i_{2}, \ldots, i_{d}\right\}$ of items. It is known that each transaction in DB has at most c items, c being a constant. Input also is a threshold minSupport for the minimum support. Present an algorithm to find all the frequent itemsets. The expected run time of your algorithm should be $O(n)$.
3. (17 points) Present an algorithm to compute $f(x)=\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)$ where $a_{1}, a_{2}, \ldots, a_{n}$ are scalars (given as input). The output should be the coefficients of $f(x)$. Your algorithm should run in time $O\left(n \log ^{2} n\right)$.
4. (17 points) Input are two polynomials $f(x)$ and $g(x)$ of degree n and m, respectively, in coefficients form. Present an $O(n \log m)$ time algorithm to multiply these two polynomials. The product should be output in coefficients form as well.
5. (16 points) Construct a linear regression model for the following input examples: $(0,1 ; 3),(1,0 ; 4),(1,1 ; 6),(2,1 ; 10)$. The model of interest is $f\left(x_{1}, x_{2}\right)=w_{1} x_{1}+w_{2} x_{2}$. Compute the best values for the parameters w_{1} and w_{2}.
6. (16 points) Present a neural network (specifically, a multilevel perceptron) for realizing the Boolean function $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{2} x_{3}+\overline{x_{1}} \overline{x_{4}}+x_{2} \overline{x_{3}} \overline{x_{4}}$.
