
CSE 4502/5717 Big Data Analytics. Fall 2022

Model Exam IV Solutions

1. Here is an algorithm:

repeat

Flip an n-sided coin to get i;

Flip an n-sided coin to get j;

if i ̸= j and A[i] = A[j] then output A[i] and quit;

forever

Analysis: Call one execution of the repeat loop as a basic step. Probability of success in

one basic step is
n
2 (

n
10

−1)
n2 ≈ 1

20 . This means that the probability of failure in one basic step

is ≤ 19
20 . Probability of failure in k basic steps is ≤

(
19
20

)k
.

We want the above probability to be ≤ n−α. This will happen if k ≥ α logn
log(20/19) . This in turn

means that the run time of the above algorithm is Õ(log n).

2. Let C = AB. By definition, Ci,j =
∨n

k=1Ai,k ∧ Bk,j , for 1 ≤ i, j ≤ n. Let the processors

be labelled P k
i,j , 1 ≤ i, j, k ≤ n. We can assign n processors to compute each element in the

product as follows:

1) for 1 ≤ i, j ≤ n in parallel do

2) /* Processors P 1
i,j , P

2
i,j , . . . , P

n
i,j compute Ci,j . */

3) for 1 ≤ k ≤ n in parallel do

4) Processor P k
i,j computes cki,j = Ai,k ∧Bk,j ;

5) Processors P 1
i,j , P

2
i,j , . . . , P

n
i,j compute Ci,j = c1i,j ∨ c2i,j ∨ · · · ∨ cni,j ;

In the above algorithm, step 4 takes one unit of time. In step 5 we have to compute the

Boolean OR of n bits. This can be done in O(1) time using n common CRCW PRAM

processors, as was shown in class. Thus, the whole algorithm takes O(1) time.

3. Have an output buffer of size BD
C for each value in the range [1, C]. Bring BD elements at a

time from the disks into the main memory. Distribute these keys to the buffers based on the

key values. Repeat this process. When any buffer is full, write these BD
C elements into the

disks. One possibility is to write them in D
C disks (a block each). In the disks, we will grow

C runs in separate regions. After one read pass through the data, X has been sorted into C

runs in the disks. Note that the number of write passes is O(C).

Now we have to write the runs contiguously in the disks. This can be done in one more pass

through the data.

4. Construct a suffix tree Q for S in O(n) time. Followed by this, perform an in-order traversal

of Q to label every internal node u of Q with an integer c[u] such that c[u] is the number of

leaves in the subtree rooted at u.



Now, perform one more traversal through Q to mark every node whose string depth is ≥ k.

In one additional traversal through Q identify the node u that is marked and whose c[u] is

the largest. Finally, output any substring of the path label of u whose length is k.

Clearly, the total run time of the algorithm is O(n).

5. Consider a complete binary tree with k leaves where each leaf has one of the input polynomials.

Perform a computation up the tree as follows. Each internal node multiplies the two children

polynomials and sends the result to its parent. When the root completes its operation we

get the product of the k ploynomials. There are log k levels in the tree and the time spent at

each level is O(n log n). Thus the run time of the algorithm is O(n log n log k).

6. The loss function is L(w1, w2) = (w2 − 6)2 + (w1 − 2)2 + (w1 + w2 − 5)2 + (w1 + 2w2 − 10)2

= 3w2
1 + 6w2

2 + 6w1w2 − 34w1 − 62w2 + 165. We want to have: ∂L
∂w1

= 0 and ∂L
∂w2

= 0.

∂L
∂w1

= 0 implies that 3w1+3w2 = 17 and ∂L
∂w2

= 0 implies that 3w1+6w2 = 31. Solving these

two equations, we get: w1 = 1 and w2 =
14
3 .


