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1. Randomized algorithms. A Monte Carlo algorithm runs for a prespecified amount of time and its
output is correct with high probability. By high probability we mean a probability of > 1 —n™%, for
any constant o (n being the input size). A Las Vegas algorithm always outputs the correct answer
and its run time is a random variable. We say the run time of a Las Vegas algorithm is O(f(n)) if
the run time is < caf(n) for all n > ng with probability > (1 — n™%) for some constants ¢ and ng.

For the repeated element identification problem we devised a Las Vegas algorithm with a run time
of 6(log n). Given a sequence of n elements, we presented a Monte Carlo algorithm to find an
element > the median that runs in time O(logn). We also showed that sorting can be done in
nlogn + O(nloglogn) comparisons (using the idea of Frazer and McKellar).

2. Master theorem. Consider the recurrence relation: T'(n) = aT'(n/b) + f(n), where ¢ > 1 and
b > 1 are constants. Casel: If f(n) = O(n'°% 2~€) for some constant e > 0, then T'(n) = ©(n'°82).
Case2: If nl°#v® = O(f(n)), then T(n) = O(f(n)logn). Case3: If f(n) = Q(n'°% ¥ €)for some
constant € > 0 and af(n/b) < cf(n) for some constant ¢ < 1, then, T'(n) = O(f(n)).

3. PARALLEL ALGORITHMS. The model we used was the PRAM (Parallel Random Access
Machine). Processors communicate by writing into and reading from memory cells that are accessible
to all. Depending on how read and write conflicts are resolved, there are variants of the PRAM. In
an Exclusive Read Exclusive Write (EREW) PRAM, no concurrent reads or concurrent writes are
permitted. In a Concurrent Read Exclusive Write (CREW) PRAM, concurrent reads are permitted
but concurrent writes are prohibited. In a Concurrent Read Concurrent Write (CRCW) PRAM both
concurrent reads and concurrent writes are allowed. Concurrent writes can be resolved in many ways.
In a Common CRCW PRAM, concurrent writes are allowed only if the conflicting processors have
the same message to write (into the same cell at the same time). In an Arbitrary CRCW PRAM,
an arbitrary processor gets to write in cases of conflicts. In a Priority CRCW PRAM, write conflicts
are resolved on the basis of priorities (assigned to the processors at the beginning).

We presented a Common CRCW PRAM algorithm for finding the Boolean AND of n given bits in
O(1) time. We used n processors. As a corollary we gave an algorithm for finding the minimum
(or maximum) of n given arbitrary real numbers in O(1) time using n? Common CRCW PRAM
Processors.

We also discussed an optimal CREW PRAM algorithm for the prefix computation problem. This
algorithm uses & processors and runs in O(logn) time on any input of n elements. (For the prefix
computation problem the input is a sequence of elements from some domain X: k1, ko, ..., k, and the
output is another sequence: ki,k1 ®ko,..., k1 Dko P k3D - D ky,, where @ is any binary associative
and unit-time computable operation on X..) As an application of prefix computation, we proved that
sorting of n elements can be done in O(logn) time using % CREW PRAM processors.

The slow-down Lemma: If A is a parallel algorithm that uses P PRAM processors and runs in 7T’
time, then A can be run on a P’-processor machine to get a run time of 7" such that 77 = O (%),
for any P’ < P.

4. In an out-of-core computing model we typically measure only the number of 1/O operations (i.e., the
I/O complexity) performed by any algorithm. Computing time normally is much less than the I/0O
time. We let M and B denote the size of the core memory and the block size, respectively. We showed

the following results for a single disk model: 1) We can sort N elements with O (% %) I/0

operations. We first formed runs of length M each and then merged these N/M runs using a M/B-
way merge algorithm; 2) There exists a deterministic algorithm for selection whose I/O complexity
is O(N/B). BFPRT algorithm was used to achieve this result.
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1. We presented a randomized algorithm for solving the selection problem on a single
disk that has an 1/O complexity of O (%)7 where n is the input size and B is the
block size. We also analyzed the 1/O complexity of Depth First Search on a graph
G(V, E). Assuming that M = ©O(]V]), we showed that the I/O complexity for DFS

was O (% + |V|>

2. In a Parallel Disks Model (PDM) there are D disks. In one parallel I/O we can
bring a block (of size B) of elements from each of the disks. We typically assume
that M is a constant multiple of DB. We briefly described the DSM and SRM al-
gorithms for sorting on the PDM. We then introduced the (¢, m)-merge sort (LMM)

algorithm and showed that it can be used to sort N given elements in no more than
[ log(£7)

2
Tog(min(v/ 37, 21)) + 1| number of passes through the data.

3. Suffix tree is a powerful data structure that can be used to perform a variety of op-
erations on strings and much more. We showed the following results: 1) Given a text
T and a pattern P we can search for P in 7" in O(m + n) time where m = |T| and
n = |P|; 2) Given a text 7" and a set P = {Py, P»,..., P,} of patterns, we can find
all the occurrences of all the patterns in 7" in O(m + N + K) time where m = |17,
N 1is the total size of all the patterns and K is the total number of occurrences of
all the patterns in T'; 3) Given a database DB of texts {T},Ts,...,T}} and a set of
patterns P = {P, P,..., P, }, we can find occurrences of all the patterns in DB in
O(M + N + K) time where M is the total size of all the texts in DB, N is the total size
of all the patterns, and K is the total number of occurrences of all the patterns in DB;
4) Given two strings S; and Sy, we can find the longest common substring between
them in O(|Si| + |S2|) time; 5) Given two strings S; and Sy and an integer I, we can
find all the substrings of Sy of length > [ that occur in Sy in O(|Si| + |S2|) time; 6)
Given a string 57, a collection of strings Cy,Cs, ..., C, and an integer [, we can find
all the occurrences of C; of length > [ in Sy (for 1 < i < q) in O(|S1] + Y.L, |Ci])
time; and 7) Given n strings of total length M, we can solve the all pairs suffix-prefix
problem in O(M + n?) time.

4. We showed that we can sort n integers in the range [1,n°] in O(n) time, ¢ being any
constant. We also showed that we can find the minimum (or maximum) of n integers
in the range [1,n¢ in O(1) time using n common CRCW PRAM processors.

5. We can use the suffix array and the longest common prefix (LCP) array to search
for a pattern P in a text T in O(n + logm) character comparisons, where m = |T|
and n = |P|. We also pointed out that we can compute the LCP array (for pairs of
interest in string matching) in O(m) time. We also presented the skew algorithm for
constructing a suffix array that takes O(m) time on any input string of length m.
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1. Association Rules Mining. An itemset is a set of items. A k-itemset is an itemset of size k. A
transaction is an itemset. A rule is represented as X — Y where X #0,Y #0, X NY = 0.

We are given a database DB of transactions and the number of transactions in the database is n. Let
I be the set of distinct items in the database and let d = |I|.

For an itemset X, we define o(X) as the number of transactions in which X occurs, i.e. o(X) = |{T €

DB|X C T}| The support of any rule X — Y is @ The confidence of any rule X — Y is
o(XUY)
o(X) -

Association Rules Mining is defined as follows.

Input: A DB of transactions and two numbers: minSupport and minConfidence.
Output: All rules X — Y whose support is > minSupport and whose confidence is > minConfidence.

An itemset is frequent if o(X) > n - minSupport

We discussed the Apriori algorithm for finding all the frequent itemsets. This algorithm is based on the
a priori principle: If X is not frequent then no superset of X is frequent. Also, If X is frequent then
every subset of X is also frequent.

The pseudocode for the Apriori algorithm is given next.

Algorithm 1: Apriori algorithm

k:=1;
Compute F; = {i € I|o(i) > n - minSupport };
while F}, # () do
k:=k+1;
Generate candidates C, from Fj._1;
for T'e DB do
for C € Cj, do
if C C T then
L L o(C):=0(C)+1,;
Fk = @;
for C € Cj, do
if o(C) > n - minSupport then
| Fi:=FUu{C}

We can use a hash tree to compute the support for each candidate itemset.

We also presented a randomized Monte Carlo algorithm for identifying frequent itemsets. The idea was
to pick a random sample, identify frequent itemsets in the sample (with a smaller support) and output
these. We proved that the output of this algorithm will be correct with a high probability using the
Chernoff bounds:

If X is B(n,p), then the following are true:
Prob.[X > (1 + €)np|] < exp(—€e>np/3)

Prob.[X < (1 — €)np|] < exp(—€e*np/2),



for any 0 < e < 1.

. Polynomial Arithmetic. A degree-n polynomial can be evaluated at a given point in O(n) time.
Lagrangian interpolation algorithm runs in O(n?) time whereas Newton’s interpolation algorithm takes
O(n?) time.

Two degree-n polynomials can be multiplied in O(n logn) time. A degree-n polynomial can be evaluated
at n given arbitrary points in O(n log? n) time. Also, interpolation of a polynomial presented in value
form at n arbitrary points can be done in O(n log® n) time.

. Linear Regression. Let f : " — R be any function on n variables. Given a series of examples to

learn f, we can fit them using a linear model: f(z1,z2,...,2,) = wix] + waxe + - -+ + WpTy. Linear
regression computes the optimal values for the parameters by equating the gradient to zero. Let the
examples be (x},22,..., 2% y;) for 1 <i <m. Let w = (w; wy -+ wy)T be the parameter vector. Also,
let
:L'% x% PR x?
1 2
X _ x2 l‘2 .« e l‘g
':L",]:n/ xgn PR x:”n

Then, we showed that the optimal value for w is (X7 X )~ !XTy where y = (y1 y2 -+ ym)".

. Neural Networks. We showed that any Boolean function can be realized using a multilevel perceptron.
We also showed that both forward and back propagation on a feed-forward neural network can be
completed in O(|V| + |E|) time, where G(V, E) is the graph that represents this neural network.



