$$
\operatorname{CSE} 4502 / 5717
$$

Big data analytics Exam III Review

TOPICS:

* assocratidon Ruces

MCNTNG

* Paynomial arthmotrc
* machine lehrning:
lanear regresian Murticeza meceproons Neorta Nétworks.

ASSOCiATION RUVES MCNING:
PUT: A DB of n transactions $I=A$ set of profile items $|I|=d$.
A transaction CI.
Ourfout: Rales of the find $X \rightarrow Y$ Where $x \neq \phi, Y \neq \phi ; x \cap Y=\phi$ $X \subseteq I, Y \subseteq$ I

A Subset of items is also known as an ctemsetA k-itenset is an iteruset wis k items.
Two Steps in Generating Rules:
(1) IDENTFY all the FREQ. Censes;
(2) IDENTIFY Rules from them.
$\sigma(x) \triangleq$ the \# \& transactions in Which X recurs, $X \subseteq I$. An itemiser is Frequent if $\sigma(x) \geqslant n$. mincupport, when NimSupport is a fraction Supplied ty the user.

We are interested in Rules for whish the support is t miss support \& the Confidence is $\geqslant \min$ Confidence. Support for a Rule $X \rightarrow Y$ is $\frac{\sigma(x \cup y)}{n}$
Confidence for $x \rightarrow y$ is $\frac{\sigma(x u y)}{\sigma(x)}$.

A SIMPE ALGORLTMM:
Assume that each transaction is an indiats) arsay.
TD FIND FREQ. K ivemsets:
(1) Geverate ase posible k itenses. There are $\binom{d}{k}$ of them.
(2) Fr each k-ctemset compute

Troe time $=O\left(\begin{array}{l}\binom{d}{k} k n\end{array}\right)$.

Aprorr principles

* 平 X is freaueve, then aviy Subset \& x is ako Fdea.
* If x is not freauent, then no Superser of x Can be.

Let F_{k} devote the set of ale Frequent K-itemises. Aprons Alg

Generate fir; $K=1$
Repeat

1) Generate Candidates $C_{K+1} ; F_{\text {fir }}=\phi$;
2) Compute the support for avery $q \in e_{\text {ert }}$; If q is freq. add it to Fist;
3) $k=k+1$. Is F_{k} is empery, quit;

Forever

Made with Doceri

Geveration of $C_{k \in 1}$ Flom F_{k}
(1) $F_{k} \times F_{1}$
(2) $F_{k} x F_{k}$

$$
\begin{aligned}
& a_{1} a_{2} \cdots a_{k-1} a_{k} \in f_{k} \\
& 1_{1} \\
& b_{1} b_{2} \cdots b_{k-r} \\
& b_{k} \in F_{k}
\end{aligned}
$$

\& $a_{i}=b_{i}$ for $1 \leqslant i \leqslant(k-1)$, then acd $a_{1}, a_{2}, \cdots, a_{k-1}, a_{k}, b_{k}{ }^{\text {to }} C_{k+1}$.

Candidate pruning using Hash free.

$$
\left(F z=\left(a_{1}, a_{2}, \cdots, a_{k+1}\right) \in C_{k+1},\right.
$$

then for every k - Subset Q of Z Check if $Q \in F_{k}$.

High tree

Compute the support fo every $Q \in C_{k+1}$.
Hash froe Can be used here as well.
Generation of Rules. let X be fred \& $\operatorname{Cot} x^{\prime} c x$ xt Constr the Rule: $X^{\prime} \rightarrow x-x^{\prime}$.

A RONDOMIZED Als.
Pick a $\begin{gathered}\text { Randdm Scmple } S \text {. }\end{gathered}$
We a threshol) of (1-E) minsuppork
Fib ace the Freq, itemsets in S.
output those that are Ferox in $D B$.

Computing F_{1} :
 array.
For every item i $\in I$ do
Compute the support of i; if it is $\geqslant \mathrm{min}$ subposit outfatic;

Total Rem tine $=O(d n)$

Polynomial arthintatic:
How fast Gan we. Mustiply two degree-n foynomials?
we can multikly in $O\left(h^{2} \mathrm{~s}\right.$ twe. polynoninals are supptier in Colfirients Form.

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

VALUE FORM:
Pick $(n+1)$ distinct points $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$.

$$
\left(u_{0}, f\left(u_{0}\right)\right),\left(u_{1}, f\left(u_{1}\right)\right), \ldots\left(u_{n}, f\left(u_{n}\right)\right) .
$$

Untitled 1.pdf
Page 17 of 36

$$
\begin{aligned}
& \left(C_{0}, f\left(x_{0}\right)\right)\left(C_{1}, f\left(c_{1}\right), \ldots,\left(C_{2 n}, f\left(L_{2 n}\right)\right)\right. \\
& \left(C_{0}, \mathcal{(}\left(_{0}\right),\left(C_{1}, C_{1}\right), \cdots\left(C_{2 n}, g C_{2 n}\right)\right) \\
& \text { (15) Pranuct } \\
& \left.\left(C_{0}, f\left(t_{0}\right) g_{0}\right),\left(c, f\left(c_{1}\right) g_{1}\right)\right), \cdots \\
& \left(G_{2 n}, f\left(c_{n n}\right) g\left(c_{2 n}\right)\right) \text {. }
\end{aligned}
$$

PERFORM EVALUATION A INTERPOLATION using $N^{\text {th }}$ Roots of unity.

$$
\begin{aligned}
& 1, \omega, \omega^{2}, \cdots, \omega^{N-1} \\
& \omega=\operatorname{Prin\pi \pi ce} \text { No No ot of } \\
& =e^{2 \pi i / N}=\cos \left(\frac{2 \pi}{N}\right)+i \sin \left(\frac{2 \pi}{N}\right) .
\end{aligned}
$$

Theronem: we Can Multioly tro degree-n pilyuomials is Orlopn) tre.

MACHINE LEARNING:

$$
f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

(NAUT: E Examples: $\left(\vec{x}_{1}, f\left(x_{1}\right)\right)$,

$$
\left(\vec{x}_{2}, f\left(\vec{x}_{2}\right)\right), \cdots,\left(\vec{X}_{m}, f\left(\vec{x}_{m}\right)\right) .
$$

outport 1 A Guess for f. Each guess is a Mold.

gradient descant:

$$
f(x+t) \cong f(x)+\epsilon f^{\prime}(x) .
$$

Not: $\frac{f\left(x-\epsilon \operatorname{sig}\left(f^{\prime}(x)\right)\right)}{\operatorname{cosel}^{\prime}} \leqslant f(x)$
Case 1: $f^{\prime}(x)$ is $t^{\text {ne }}$

$$
f(x-\epsilon) \cong f(x)-\epsilon f^{\prime}(x) \leqslant f(x) \text {. }
$$

Case 2: $f(x)$ is te:

$$
f(x+6) \stackrel{ }{=} f(x)+6 f^{\prime}(x) \leqslant f(x) .
$$

We want to Minimize $\left.\frac{1}{m}|X \vec{w}-\vec{y}|\right|_{2} ^{2}$ Loss function.

$$
\begin{aligned}
& z_{\vec{\omega}} c=0 ; \quad c=(x \vec{b}-\vec{y})^{\top}(x \vec{b}-\vec{y}) \\
& \left.\vec{\omega}=\left(x^{\top} x\right)^{-1} x^{\top} \vec{y} \quad \begin{array}{c}
\sin \pi m e \\
=O\left(h_{m}^{2}+n^{\vec{n}}\right.
\end{array}\right) .
\end{aligned}
$$

FACT. Any boolean Functici Ganbe vealizas us a Muifilevel pacoption.

Fact.
Forwaris \& Back profagation Canbe done in:
(1) $O n^{2} L$ fine, $n=$ cearass in each lago or
(2) $O(N(H E I)$ tince

Where $\sigma(N, E)$ is the Nairal ATetroik.

Molel tram:
(1) Total \#8 items in ale B the fransactions $=O(n)$.
Pick a Random Saudle S of Otop n) transactions. Identiry itens Freqhent in the saunfe wite a sumport $\& \frac{1}{8}$. ourput the Fang. Coms:
(2) Geverate ale the prosible k-itensets. there ${ }^{\text {are }}\binom{d}{k}=O\left(d^{k}\right)$ Compurce the supost for of them. k - itemset.
Assume thar $3 n$ froc. ber Etenset.

Have a Bit arbay of Stun:

Sue For every transaction. For $1 \leqslant i \leqslant n$ in \mathbb{R} lo If t_{1} Consing the itemset, set $B[i]=1$.
All the n frow. parporm a fresid slews on RET] B[2] $\cdots, \mathrm{B}_{2} \mathrm{n}^{2}$.
(3) For 1 siscn 20

Evoluate f(i). If fis $=0$ then ourturt i-
(4)

