CSE 4502/5717 Big Data Analytics
 Fall 2022; Homework 2 Solutions

1. Dijkstra's algorithm can be described as follows:
```
Algorithm 1: Dijkstra( \(V, E, s\) )
    Data: \((V, E)\) : a graph;
        \(s\) : a source node;
        let \(w(u, v)\) be the weight of edge \((u, v)\);
    Result: array \(d\) where \(d_{u}\) is the length of the shortest path from \(s\) to \(u\);
    begin
        for \(u\) in \(V\) do
                \(d_{u}:=\infty ;\)
        \(d_{s}:=0 ;\)
        Create a priority queue \(Q\) to store pairs of the form (node, distance);
        Insert the pair \((s, 0)\) into \(Q\);
        while \(Q\) not empty do
            \((u, r):=\operatorname{ExtractMin}(Q)\);
            for every child \(c\) of \(u\) do
                    if \(d_{c}>d_{u}+w(u, c)\) then
                \(d_{c}:=d_{u}+w(u, c) ;\)
                Insert \(\left(Q,\left(c, d_{c}\right)\right) ; / /\) update distance if \(c\) present
```

We assume that we can store the priority queue in memory $(O(|V|))$. The algorithm will read the neighbors of each node at most once. Therefore, the total number of I/Os is $\sum_{u \in E}\left\lceil\frac{d e g_{u}}{B}\right\rceil=O\left(\frac{|E|}{B}+|V|\right)$.
2. We apply the LMM algorithm with $l=m=\sqrt{M}$. We assume known that we can merge \sqrt{M} sequences of length M each in 3 passes through the data. The pseudocode of the algorithm is given below:

```
Algorithm 2: \(\operatorname{Sort}(X, N)\)
    Data:
    \(X\) : array of elements;
    \(N=M^{2}\) : number of elements in \(X\);
```

 Result: sorted array \(X\);
 begin
 // First Pass;
 Split the input into \(M\) runs of length \(M\) each;
 Sort each run and unshuffle it into \(m=\sqrt{M}\) sequences of length \(\sqrt{M}\) each;
 // Second Pass;
 Merge groups of \(l=\sqrt{M}\) unshuffled sequences (in memory);
 // Third Pass;
 Shuffle groups of \(m=\sqrt{M}\) merged sequences of length \(M\) each;
 At the same time clean up the dirty regions;
 At this point we have \(\sqrt{M}\) sorted runs of length \(M \sqrt{M}\) each;
 // Third Pass (can be done with the previous pass);
 Unshuffle each run of length \(M \sqrt{M}\) into \(m=\sqrt{M}\) sequences of length \(M\)
 each ;
 // Fourth, Fifth and Sixth Pass;
 Merge groups of \(l=\sqrt{M}\) unshuffled sequences of length \(M\) each;
 // Seventh Pass;
 Shuffle groups of \(m=\sqrt{M}\) merged sequences of length \(M \sqrt{M}\) each;
 Clean up dirty regions;
 For an arbitrary N, the general principle is to first merge \sqrt{M} sequences of length M each, then merge \sqrt{M} sequences of length $M \sqrt{M}$ each and so on. Let K stand for \sqrt{M} and let $T(u, v)$ be the number of passes required to merge u sorted sequences of length v each. Then we have the familiar formulas:

$$
\begin{aligned}
T(K, M) & =3 \\
T\left(K, K^{i} M\right) & =2+T\left(K, K^{i-1} M\right)=2 i+3 \\
T\left(K^{c}, M\right) & =T(K, M)+T(K, K M)+T\left(K, K^{2} M\right)+\ldots+T\left(K, K^{c-1}\right) \\
& =\sum_{i=0}^{c-1}(2 i+3)=c^{2}+2 c
\end{aligned}
$$

However, as we saw in the previous pseudocode, when we compute $T\left(K^{c}, M\right)$ we can
overlap the unshuffling at the beginning of a $T\left(K, K^{i} M\right)$ computation with the shuffling done at the end of the previous $T\left(K, K^{i-1} M\right)$ computation. Therefore, the last equation becomes:

$$
T\left(K^{c}, M\right)=T(K, M)+\ldots+T\left(K, K^{c-1}\right)-(c-1)=c^{2}+c+1
$$

Therefore the number of passes for M^{2} and M^{3} elements are:

$$
\begin{aligned}
& T\left(M^{2}\right)=T(M, M)=T\left(K^{2}, M\right)=2^{2}+2+1=7 \\
& T\left(M^{3}\right)=T\left(M^{2}, M\right)=T\left(K^{4}, M\right)=4^{2}+4+1=21 \square
\end{aligned}
$$

In general, for a given N, if $K^{c}=N / M$ it means that $c=2 \frac{\log N / M}{\log M}$ and the number of passes to sort N elements is:

$$
T(N)=T\left(K^{c}, M\right)=4\left(\frac{\log N / M}{\log M}\right)^{2}+2 \frac{\log N / M}{\log M}+1
$$

3. The input striping is good for accessing the rows of the matrix in a disk parallel manner. However, if we want to access the columns, this striping is not good. To multiply A and C we need the transpose of C. To get this, we first restripe the matrix C as follows. Let R_{i} be the i th row of C. We read R_{i} into core memory in $\frac{n}{D B}$ parallel I/Os. We then rewrite row R_{i} starting from disk $i \bmod D$ (with one block per disk). This is done for every $1 \leq i \leq n$. After this restriping, we read one column at a time into the core memory and write it back to the disks one block per disk (starting from the first disk). Note that a column can be read in $\frac{n}{D}$ parallel I/O operations. Thus the matrix C can be transposed in $\frac{n^{2}}{D}<\frac{n^{3}}{D B}$ parallel I/O operations.

We then use the following algorithm. Let $E=A C$.
for $i:=1$ to n do
Read row i of A into core memory. Let this row be called A_{i}.
for $j:=1$ to n do
Read column j of C into core memory. Let this column be C_{j}.
$E_{i j}=\sum_{k=1}^{n} A_{i}[k] * C_{j}[k]$.
Write row i of E into the disks, striping the data in a row-major order.

Each row or column of A or C can be read in $O\left(\frac{n}{D B}\right)$ parallel I/Os. Also, each row of E can be written in $O\left(\frac{n}{D B}\right)$ I/Os. Thus the total number of parallel I/Os is $O\left(\frac{n^{3}}{D B}\right)$.
4. Let the input strings be $S_{1}, S_{2}, \ldots, S_{k}$ with $\sum_{i=1}^{k}\left|S_{i}\right|=M$. Build a generalized suffix tree for these strings in $O(M)$ time. Let the suffixes be labelled with (i, j) where i refers to S_{i} and j refers to the j th suffix in S_{i}. Perform a depth first traversal in this tree.

When we reach a leaf labelled $(i, 1)$ for some i, this leaf corresponds to the entire string S_{i}. This leaf might have more than one labels. Let these labels (in addition to $(i, 1)$) be $\left(i_{1}, l_{1}\right),\left(i_{2}, l_{2}\right), \ldots,\left(i_{q}, l_{q}\right)$. Clearly, all the strings $S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{q}}$ have S_{i} as a substring. Output all of these strings as those that contain S_{i}. Check if the edge to this leaf's parent is labeled with $\$$. If not, proceed with the traversal. If yes, let x be the parent of this leaf. Also, let $c_{1}, c_{2}, \ldots, c_{r}$ be the other children of x. Traverse through all the subtrees rooted at these children. All the leaves in these subtrees also correspond to strings that have S_{i} as a substring. Output these strings as well (as those that contain S_{i}) and proceed with the traversal.
The entire algorithm can be implemented to run in time $O\left(M+k^{2}\right)$.
5. Let $S_{1}, S_{2}, \ldots, S_{k}$ be the given input strings. Let $\left|S_{i}\right|=n_{i}$, for $1 \leq i \leq k$. For any two strings S_{i} and S_{j} we can compute the longest common substring between them in $O\left(n_{i}+n_{j}\right)$ time, for $1 \leq i, j \leq k$. Use this algorithm to compute the longest common substring between every pair of strings. The total run time is $O\left(\sum_{i=1}^{k} \sum_{j=1}^{k}\left(n_{i}+n_{j}\right)\right)=$ $O(k M)$.
6. Note that on a common CRCW PRAM we can compute the minimum or maximum of n integers (in the range $\left[1, n^{O(1)}\right]$) in $O(1)$ time using n processors.

Let T be the text and P be the pattern with $|T|=m$ and $|P|=n$. We can use binary search on the suffix array. In any iteration of binary search, we have to compare the pattern P with a suffix T_{i} of the text. This comparison involves the identification of the smallest integer q such that $P[q] \neq T_{i}[q]$. This can be done in $O(1)$ time using the above algorithm. Thus the entire binary search takes $O(\log m)$ time.

