Name:

CSE 4502/5717 Big Data Analytics

Fall 2022 Model Exam III

Note: You are supposed to give proofs to the time and processor bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. Input is a database DB with n transactions from a set $I=\left\{i_{1}, i_{2}, \ldots, i_{d}\right\}$ of items. It is known that the number of items in each of the n transactions in DB is $O(1)$. Input also is a threshold minSupport $=1 / 4$ for the minimum support. Present an $O((\log n)(\log \log n))$ time Monte Carlo algorithm for finding all the frequent items. Show that the output of your algorithm is correct with a high probability.
2. Input is a database DB with n transactions from a set $I=\left\{i_{1}, i_{2}, \ldots, i_{d}\right\}$ of items. Input also is a threshold minSupport for the minimum support. We are required to identify all the frequent k-itemsets, where k is a constant. Present a parallel algorithm for this problem that runs in $O(\log n)$ time. You can use up to $\frac{n d^{k}}{\log n}$ CREW PRAM proccessors. Assume that each transaction is given as a bit array as discussed in class.
3. Present an $O\left(n \log ^{2} n\right)$ time algorithm to compute all the roots of a given degree- n polynomial $f(x)$. Assume the following: 1) The roots of $f(x)$ are integers in the range $[1, c n]$ where c is a constant; 2) The polynomial is given in coefficients form. (Recall that a is a root of $f(x)$ if $f(a)=0$.) (Hint: Assume that we can evaluate any degree- n polynomial at n arbitrary points in $O\left(n \log ^{2} n\right)$ time $)$.
4. Input is a sequence X of pairs of real numbers $\left(r_{1}, a_{1}\right),\left(r_{2}, a_{2}\right), \ldots,\left(r_{n}, a_{n}\right)$. The problem is to find a polynomial $f(x)$ of minimum degree (d) such that $f\left(r_{i}\right)=a_{i}$, for $1 \leq i \leq n$. For example, if the input sequence is $(0,1),(1,3),(2,5),(3,7),(4,9)$, the answer is $f(x)=2 x+1$. Present an algorithm to solve this problem that runs in $O\left(n \log ^{3} d\right)$ time. (Assume that $n>d \log d)$. (Hint: Assume that we can perform interpolation at n arbitrary points in $O\left(n \log ^{3} n\right)$ time $)$.
5. Construct a linear regression model for the following input examples: $(0,1 ; 4),(1,0 ; 3),(1,1 ; 6),(2,1 ; 10)$. The model of interest is $f\left(x_{1}, x_{2}\right)=w_{1} x_{1}+w_{2} x_{2}$. Compute the best values for the parameters w_{1} and w_{2}.
6. Present a neural network (specifically, a multilevel perceptron) for realizing the Boolean function $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \overline{x_{3}} x_{4}+x_{2} \overline{x_{3}}+x_{1} x_{2} \overline{x_{4}}$.
