CSE 4502/5717 Big Data Analytics. Fall 2022 Model Exam III Solutions

1. Let D be the input database that has n transactions. Pick a random sample S of transactions from D such that $|S|=c \log n$ for some constant c. Identify and output all the items in S whose support in S is at least $\frac{1}{8}$. This can be done as follows. Let the total number of items in all the transactions in S be $k \log n, k$ being a constant. Sort all of these items together. Scan through the sorted list and identify all the items whose support in S is $\geq \frac{1}{8}$.

Analysis: Clearly, the run time of the algorithm is $O(\log n \log \log n)$.
Let i be an item in D whose support in D is $\geq \frac{1}{4}$. Let Q be the set of transactions in D in which item i occurs. Let $|Q|=q$. We know that $q \geq \frac{n}{4}$. Let t be any transaction in Q. Probability that t occurs in S is $\frac{s \log n}{n}$. The number m of transactions of Q that occur in S is $B\left(q, \frac{c \log n}{n}\right)$. The expected value of m is $\frac{q c \log n}{n} \geq \frac{c \log n}{4}$.
Using Chernoff bounds, probability that $m<\frac{c \log n}{8}$ is $\leq \exp \left(-\frac{c \log n}{32}\right)$. Let the total number of items in the n transactions be $j n$ where j is a constant. Probability that at least one of the frequent items of D does not have a support of $\geq \frac{1}{8}$ in S is $\leq j n \exp \left(-\frac{c \log n}{32}\right)$. This probability will be $\leq n^{-\alpha}$ if $c \geq 32(\alpha+2)$.
Let the total number of items in all the transactions in S be $k \log n, k$ being a constant. Sort all of these items together in $O(\log n \log \log n)$ time. Scan through the sorted list and identify all the items whose support in S is $\geq \frac{1}{8}$. Output these items. Clearly, the run time of the algorithm is $O(\log n \log \log n)$.
2. Note that there are $\binom{d}{k}<d^{k}$ possible k-itemsets. We can generate all possible k-itemsets in $O(1)$ time using $\binom{d}{k}$ processors. These are the candidates. Followed by this, we count the support for each possible k-itemset. We assign $\frac{n}{\log n}$ processors for each k-itemset candidate. The support can be computed in $O(\log n)$ time using a prefix computation. Details follow.

1) for each candidate c in parallel do
2) for each transaction t in parallel do
3) Processor $P_{c, t}$ computes $b_{c, t}$ as 1 if c is in t and zero otherwise;
4) $\frac{n}{\log n}$ processors perform a prefix sums computation on $b_{c, 1}, b_{c, 2}, \ldots, b_{c, n}$.
5) If this sum is \geq minSupport, output c as a frequent k-itemset;

Analysis: All the candidates can be generated in $O(1)$ time. For a given candidate c, if we have n processors, we can complete step 3 in $O(1)$ time. Using the slow-down lemma, this can be done in $O(\log n)$ time using $\frac{n}{\log n}$ processors. Step 4 takes $O(\log n)$ time and step 5 takes $O(1)$ time. Thus the total run time is $O(\log n)$.
3. Evaluate the given polynomial at each integer in the range $[1, c n]$. If the polynomial evaluates
to zero at any v, then v is a root. We can evaluate the polynomial at $c n$ points in $O\left(n \log ^{2} n\right)$ time as has been mentioned in class.
4. We first get an upper bound on d (within a factor 2) using the doubling trick. Followed by this, we use binary search to get the value of d. Once we know d, we interpolate the first d pairs in X to get and output the right polynomial.

$$
k:=1
$$

repeat

1. Interpolate the first k pairs of X to get a polynomial $f(x)$;
2. Check if $f\left(r_{i}\right)=a_{i}$ for each $i, 1 \leq i \leq n$;
3. If yes, then quit else $k:=2 k$;
forever
The k we get from the above code is an upper bound on d such that $k \leq 2 d$. Now we perform a binary search in the range $\left[\frac{k}{2}, k\right]$ to get the actual value of d in a similar manner. Once we know the value of d we do an interpolation on the first d pairs of X to get the correct polynomial $f(x)$.
Note that one execution of step 2 above can be done in $O\left(n \log ^{2} k\right)=O\left(n \log ^{2} d\right)$ time. In the entire algorithm we perform step 2 a total of $O(\log d)$ times. Thus the total time for step 2 is $O\left(n \log ^{3} d\right)$. We also perform step 1 a total of $O(\log d)$ times and each execution of step 1 takes $O\left(k \log ^{3} k\right)=O\left(d \log ^{3} d\right)$ time. Thus the total time for step 1 is $O\left(d \log ^{4} d\right)$. Step 3 takes a total of $O(\log d)$ time.

Thus, the run time of the entire algorithm is $O\left(n \log ^{3} d+d \log ^{4} d\right)$. If n is much larger than d, then this run time is $O\left(n \log ^{3} d\right)$.
5. The loss function is $L\left(w_{1}, w_{2}\right)=\left(w_{2}-4\right)^{2}+\left(w_{1}-3\right)^{2}+\left(w_{1}+w_{2}-6\right)^{2}+\left(2 w_{1}+w_{2}-10\right)^{2}$ $=6 w_{1}^{2}+3 w_{2}^{2}+6 w_{1} w_{2}-58 w_{1}-40 w_{2}+161$. We want to have: $\frac{\partial L}{\partial w_{1}}=0$ and $\frac{\partial L}{\partial w_{2}}=0$. $\frac{\partial L}{\partial w_{1}}=0$ implies that $12 w_{1}+6 w_{2}=58$ and $\frac{\partial L}{\partial w_{2}}=0$ implies that $6 w_{1}+6 w_{2}=40$. Solving these two equations, we get: $w_{1}=3$ and $w_{2}=\frac{11}{3}$.
6. Here is a multilevel perceptron for realizing the Boolean function $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \overline{x_{3}} x_{4}+$ $x_{2} \overline{x_{3}}+x_{1} x_{2} \overline{x_{4}}$:

Figure 1: A neural network for $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \overline{x_{3}} x_{4}+x_{2} \overline{x_{3}}+x_{1} x_{2} \overline{x_{4}}$.

