
CSE 4502/5717 Big Data Analytics. Fall 2022

Exam II Solutions

1. Consider the following algorithm:

for every pair of vertices (a, b) in V do

Bring the adjacency lists A[a] and A[b] of a and b, respectively, from the disk.

if A[a] and A[b] have a common node c then output (a, b, c) and quit;

Analysis: The for loop is run in the worst case O(|V |2) times. In each run of the for loop,

we bring in O(|V |) nodes from the disk. Thus each run of the for loop involves O
(
|V |
B

)
I/O

operations. Thus, the entire algorithm makes O
(
|V |3
B

)
I/O operations in the worst case.

2. We first merge R1 and R2 to get S1. We also merge R3 and R4 to get S2. Finally, we merge

S1 and S2.

We can merge R1 with R2 and merge R3 with R4 in one pass through the data. Consider

the problem of merging R1 and R2. We start by bringing BD elements from R1 and BD

elements from R2 into the core memory. We start merging them. We write the merged output

into an output buffer of size BD (residing in the core memory). When the buffer is full, we

write these BD elements across the disks in parallel and clear the buffer. When we run out

of elements from any of the runs, we bring the next BD elements from that run. Clearly, we

can merge R1 and R2 by bringing each element of these runs only once into the core memory.

In the same way we can merge R3 and R4.

Now we have two sorted sequences S1 and S2 of length 2M2 each. We can also merge them

in a similar manner in one pass through the data.

3. Note that for this problem, B = M0.75 and D = M0.25. Here is an algorithm:

(a) Form runs of length M each; There are M0.25 runs that we have to merge. Let these

runs be X1, X2, . . . , XM0.25 .

(b) Unshuffle each run into M0.25 parts. Let the parts of Xi be X1
i , X

2
i , . . . , X

M0.25

i , for

1 ≤ i ≤M0.25.

(c) Recursively Merge Xj
1 , X

j
2 , ..., X

j
M0.25 to get Yj , for 1 ≤ j ≤M0.25.

(d) Shuffle Y1, Y2, . . . , YM0.25 to get Z.

(e) Clean up the dirty sequence in Z.

Analysis: Note that we have used LMM with ` = m = M0.25. Steps (a) and (b) take 1 pass

together. Step (c) takes 1 pass.

Assume that we have a memory of size 2M . In this case we can clean up the dirty sequence

while we are shuffling. Let Z be partitioned into blocks of size M each: Z = Z1, Z2, . . ., where

each block Zi is of size `m =
√
M . Note that the dirty sequence can only span two successive

blocks. Therefore, one way of cleaning the sequence Z is to: sort and merge Z1 and Z2; Z2

and Z3; etc. If we have 2M memory, we can do this cleaning as well as Step (d) in a total of

one pass.

As a result, Steps (d) and (e) take 1 pass.

In summary, the total number of passes = 3.

4. We build a generalized suffix tree Q on all of the (k + 1) input strings. The time needed

is O(kn). Note that the size of the tree Q is O(kn). For each node u in Q we associate a

bit array bu[1 : k + 1]. We start from the leaves and proceed towards the root as follows.

If v is a leaf, and if it represents suffixes from Si, for any i, 1 ≤ i ≤ k, then set bv[i] = 1

and if v does not represent any suffix of Sj , for any j, 1 ≤ j ≤ k, then set bv[j] = 0. If v

has a label corresponding to a suffix of T , then set bv[k + 1] = 1 and if v does not have a

label corresponding to a suffix of T then set bv[k + 1] = 0. If N is an internal node, then

bN [1 : k+ 1] is computed as the boolean OR of the bits arrays of its children. We spend O(k)

time at each node and hence the total time for computing the bit arrays for all the nodes of

Q is O(k2n).

After computing the bit arrays for the nodes of Q, traverse through Q to identify the node

whose bit array has all ones in the first k positions and a zero in position k + 1, and whose

string depth is the largest. Output the path label of this node. This traversal also takes

O(k2n) time. Thus the whole algorithm runs in O(k2n) time.

5. Construct a generalized suffix tree T on the given input strings in O(M) time. Do an in-

order traversal of T to label each node as follows. Any node N will get the label i (for some

i, 1 ≤ i ≤ k) if all the leaves in the subtree rooted at N correspond to suffixes from Si. Any

node N will get the label 0 if the leaves in the subtree rooted at N correspond to suffixes from

at least two input strings. This labeling can be done in O(M) time as well. For instance,

consider a node N . If all the children of N have the same nonzero label i, then N gets the

label i; else it gets the label 0.

Do one more traversal of the tree T to look for a node N whose string depth is ≥ ` and whose

label is i for some 1 ≤ i ≤ k. If there is such a node and if its string depth is `, then output

the path label of this node. If this node N has a string depth of > `: Let N ′ be the parent

of N and let x be the path label of N ′. Let y be the label of the edge from N ′ to N . Note

that the string x concatenated with any (nonempty) prefix of y occurs only in Si. If any of

these strings is of length `, then output that string.

If there is no node in T whose string depth is ≥ ` and whose label is i (for some 1 ≤ i ≤ k),

or if no unique substring of length ` can be found in the above traversal, then output “NO”.

6. We sort the characters using the integer sort algorithm. Since the characters are integers

in the range [1,m10], this sorting can be done in O(m) time. Let the rank of ti be ri, for

1 ≤ i ≤ m. If SA[1 : m] is the suffix array for S, then set SA[ri] = i, for 1 ≤ i ≤ m. Clearly,

the entire algorithm runs in O(m) time.

