CSE 4502/5717 Big Data Analytics. Fall 2022

Exam II Solutions

1. Consider the following algorithm:
for every pair of vertices (a, b) in V do
Bring the adjacency lists $A[a]$ and $A[b]$ of a and b, respectively, from the disk.
if $A[a]$ and $A[b]$ have a common node c then output (a, b, c) and quit;
Analysis: The for loop is run in the worst case $O\left(|V|^{2}\right)$ times. In each run of the for loop, we bring in $O(|V|)$ nodes from the disk. Thus each run of the for loop involves $O\left(\frac{|V|}{B}\right)$ I/O operations. Thus, the entire algorithm makes $O\left(\frac{|V|^{3}}{B}\right)$ I/O operations in the worst case.
2. We first merge R_{1} and R_{2} to get S_{1}. We also merge R_{3} and R_{4} to get S_{2}. Finally, we merge S_{1} and S_{2}.
We can merge R_{1} with R_{2} and merge R_{3} with R_{4} in one pass through the data. Consider the problem of merging R_{1} and R_{2}. We start by bringing $B D$ elements from R_{1} and $B D$ elements from R_{2} into the core memory. We start merging them. We write the merged output into an output buffer of size $B D$ (residing in the core memory). When the buffer is full, we write these $B D$ elements across the disks in parallel and clear the buffer. When we run out of elements from any of the runs, we bring the next $B D$ elements from that run. Clearly, we can merge R_{1} and R_{2} by bringing each element of these runs only once into the core memory. In the same way we can merge R_{3} and R_{4}.
Now we have two sorted sequences S_{1} and S_{2} of length $2 M^{2}$ each. We can also merge them in a similar manner in one pass through the data.
3. Note that for this problem, $B=M^{0.75}$ and $D=M^{0.25}$. Here is an algorithm:
(a) Form runs of length M each; There are $M^{0.25}$ runs that we have to merge. Let these runs be $X_{1}, X_{2}, \ldots, X_{M^{0.25}}$.
(b) Unshuffle each run into $M^{0.25}$ parts. Let the parts of X_{i} be $X_{i}^{1}, X_{i}^{2}, \ldots, X_{i}^{M^{0.25}}$, for $1 \leq i \leq M^{0.25}$.
(c) Recursively Merge $X_{1}^{j}, X_{2}^{j}, \ldots, X_{M^{0.25}}^{j}$ to get Y_{j}, for $1 \leq j \leq M^{0.25}$.
(d) Shuffle $Y_{1}, Y_{2}, \ldots, Y_{M^{0.25}}$ to get Z.
(e) Clean up the dirty sequence in Z.

Analysis: Note that we have used LMM with $\ell=m=M^{0.25}$. Steps (a) and (b) take 1 pass together. Step (c) takes 1 pass.
Assume that we have a memory of size $2 M$. In this case we can clean up the dirty sequence while we are shuffling. Let Z be partitioned into blocks of size M each: $Z=Z_{1}, Z_{2}, \ldots$, where each block Z_{i} is of size $\ell m=\sqrt{M}$. Note that the dirty sequence can only span two successive
blocks. Therefore, one way of cleaning the sequence Z is to: sort and merge Z_{1} and $Z_{2} ; Z_{2}$ and Z_{3}; etc. If we have $2 M$ memory, we can do this cleaning as well as Step (d) in a total of one pass.
As a result, Steps (d) and (e) take 1 pass.
In summary, the total number of passes $=3$.
4. We build a generalized suffix tree Q on all of the $(k+1)$ input strings. The time needed is $O(k n)$. Note that the size of the tree Q is $O(k n)$. For each node u in Q we associate a bit array $b^{u}[1: k+1]$. We start from the leaves and proceed towards the root as follows. If v is a leaf, and if it represents suffixes from S_{i}, for any $i, 1 \leq i \leq k$, then set $b^{v}[i]=1$ and if v does not represent any suffix of S_{j}, for any $j, 1 \leq j \leq k$, then set $b^{v}[j]=0$. If v has a label corresponding to a suffix of T, then set $b^{v}[k+1]=1$ and if v does not have a label corresponding to a suffix of T then set $b^{v}[k+1]=0$. If N is an internal node, then $b^{N}[1: k+1]$ is computed as the boolean OR of the bits arrays of its children. We spend $O(k)$ time at each node and hence the total time for computing the bit arrays for all the nodes of Q is $O\left(k^{2} n\right)$.
After computing the bit arrays for the nodes of Q, traverse through Q to identify the node whose bit array has all ones in the first k positions and a zero in position $k+1$, and whose string depth is the largest. Output the path label of this node. This traversal also takes $O\left(k^{2} n\right)$ time. Thus the whole algorithm runs in $O\left(k^{2} n\right)$ time.
5. Construct a generalized suffix tree T on the given input strings in $O(M)$ time. Do an inorder traversal of T to label each node as follows. Any node N will get the label i (for some $i, 1 \leq i \leq k)$ if all the leaves in the subtree rooted at N correspond to suffixes from S_{i}. Any node N will get the label 0 if the leaves in the subtree rooted at N correspond to suffixes from at least two input strings. This labeling can be done in $O(M)$ time as well. For instance, consider a node N. If all the children of N have the same nonzero label i, then N gets the label i; else it gets the label 0 .
Do one more traversal of the tree T to look for a node N whose string depth is $\geq \ell$ and whose label is i for some $1 \leq i \leq k$. If there is such a node and if its string depth is ℓ, then output the path label of this node. If this node N has a string depth of $>\ell$: Let N^{\prime} be the parent of N and let x be the path label of N^{\prime}. Let y be the label of the edge from N^{\prime} to N. Note that the string x concatenated with any (nonempty) prefix of y occurs only in S_{i}. If any of these strings is of length ℓ, then output that string.
If there is no node in T whose string depth is $\geq \ell$ and whose label is i (for some $1 \leq i \leq k$), or if no unique substring of length ℓ can be found in the above traversal, then output "NO".
6. We sort the characters using the integer sort algorithm. Since the characters are integers in the range $\left[1, m^{10}\right]$, this sorting can be done in $O(m)$ time. Let the rank of t_{i} be r_{i}, for
$1 \leq i \leq m$. If $S A[1: m]$ is the suffix array for S, then set $S A\left[r_{i}\right]=i$, for $1 \leq i \leq m$. Clearly, the entire algorithm runs in $O(m)$ time.

