
Chapter 9

ALGEBRAIC PROBLEMS

9.1 THE GENERAL METHOD

In this chapter we shift our attention away from the problems we’ve dealt
with previously to concentrate on methods for dealing with numbers and
polynomials. Though computers have the ability already built-in to ma-
nipulate integers and reals, they are not directly equipped to manipulate
symbolic mathematical expressions such as polynomials. One must deter-
mine a way to represent them and then write procedures that perform the
desired operations. A system that allows for the manipulation of mathemat-
ical expressions (usually including arbitrary precision integers, polynomials,
and rational functions) is called a mathematical symbol manipulation sys-
tem. These systems have been fruitfully used to solve a variety of scientific
problems for many years. The techniques we study here have often led to
efficient ways to implement the operations offered by these systems.

The first design technique we present is called algebraic transformation.
Assume we have an input I that is a member of set S1 and a function
f(I) that describes what must be computed. Usually the output f(I) is
also a member of S1. Though a method may exist for computing f(I)
using operations on elements in S1, this method may be inefficient. The
algebraic transformation technique suggests that we alter the input into
another form to produce a member of set S2. The set S2 contains exactly
the same elements as S1 except it assumes a different representation for them.
Why would we transform the input into another form? Because it may be
easier to compute the function f for elements of S2 than for elements of S1.
Once the answer in S2 is computed, an inverse transformation is performed
to yield the result in set S1.

Example 9.1 Let S1 be the set of integers represented using decimal no-
tation, and S2 the set of integers using binary notation. Given two integers
from set S1, plus any arithmetic operations to carry out on these numbers,

435

436 CHAPTER 9. ALGEBRAIC PROBLEMS

today’s computers can transform the numbers into elements of set S2, per-
form the operations, and transform the result back into decimal form. The
algorithms for transforming the numbers are familiar to most students of
computer science. To go from elements of set S1 to set S2, repeated division
by 2 is used, and from set S2 to set S1, repeated multiplication is used. The
value of binary representation is the simplification that results in the internal
circuitry of a computer. 2

Example 9.2 Let S1 be the set of n-degree polynomials (n ≥ 0) with integer
coefficients represented by a list of their coefficients; e.g.,

A(x) = anxn + · · · + a1x + a0

The set S2 consists of exactly the same set of polynomials but is repre-
sented by their values at 2n + 1 points; that is, the 2n + 1 pairs (xi, A(xi)),
1 ≤ i ≤ 2n + 1, would represent the polynomial A. (At this stage we won’t
worry about what the values of xi are, but for now you can consider them
consecutive integers.) The function f to be computed is the one that de-
termines the product of two polynomials A(x) and B(x), assuming the set
S1 representation to start with. Rather than forming the product directly
using the conventional method (which requires O(n2) operations, where n
is the degree of A and B and any possible growth in the size of the coef-
ficients is ignored), we could transform the two polynomials into elements
of the set S2. We do this by evaluating A(x) and B(x) at 2n + 1 points.
The product can now be computed simply, by multiplying the corresponding
points together. The representation of A(x)B(x) in set S2 is given by the
tuples (xi, A(xi)B(xi)), 1 ≤ i ≤ 2n + 1, and requires only O(n) operations
to compute. We can determine the product of A(x)B(x) in coefficient form
by finding the polynomial that interpolates (or satisfies) these 2n+1 points.
It is easy to show that there is a unique polynomial of degree ≤ 2n that goes
through 2n + 1 points.

Figure 9.1 describes these transformations in a graphical form indicating
the two paths one can take to reach the coefficient product domain, either
directly by conventional multiplication or indirectly by algebraic transforma-
tion. The transformation in one direction is effected by evaluation whereas
the inverse transformation is accomplished by interpolation. The value of
the scheme rests entirely on whether these transformations can be carried
out efficiently.

For instance, if A(x) = 3x2 + 4x + 1 and B(x) = x2 + 2x + 5, these
can be represented by the pairs (0, 1), (1, 8), (2, 21), (3, 40), and (4, 65) and
(0, 5), (1, 8), (2, 13), (3, 20), and (4, 29), respectively. Then A(x)B(x) in S2
takes the form (0, 5), (1, 64), (2, 273), (3, 800), and (4, 1885). 2

The world of algebraic algorithms is so broad that we only attempt to
cover a few of the interesting topics. In Section 9.2 we discuss the question

9.1. THE GENERAL METHOD 437

S2 : points point product

S1 : coefficients product

evaluation interpolation

conventional
multiplication

pairwise
multiplication

Figure 9.1 Transformation technique for polynomial products

of polynomial evaluation at one or more points and the inverse operation
of polynomial interpolation at n points. Then in Section 9.3 we discuss the
same problems as in Section 9.2 but this time assuming the n points are
nth roots of unity. This is shown to be equivalent to computing the Fourier
transform. We also show how the divide-and-conquer strategy leads to the
fast Fourier transform algorithm. In Section 9.4 we shift our attention to
integer problems, in this case the processes of modular arithmetic. Modular
arithmetic can be viewed as a transformation scheme that is useful for speed-
ing up large precision integer arithmetic operations. Moreover we see that
transformation into and out of modular form is a special case of evaluation
and interpolation. Thus there is an algebraic unity to Sections 9.2, 9.3, and
9.4. Finally, in Section 9.5 we present asymptotically efficient algorithms for
n-point evaluation and interpolation.

EXERCISES

1. Devise an algorithm that accepts a number in decimal and produces
the equivalent number in binary.

2. Devise an algorithm that performs the inverse transformation of Ex-
ercise 1.

3. Show the tuples that would result by representing the polynomials

438 CHAPTER 9. ALGEBRAIC PROBLEMS

5x2+ 3x+10 and 7x+4 at the values x = 0, 1, 2, 3, 4, 5, and 6. What set
of tuples is sufficient to represent the product of these two polynomials?

4. If A(x) = anxn + · · · + a1x + a0, then the derivative of A(x), A′(x) =
nanxn−1 + · · · + a1. Devise an algorithm that produces the value of a
polynomial and its derivative at a point x = v. Determine the number
of required arithmetic operations.

9.2 EVALUATION AND INTERPOLATION

In this section we examine the operations on polynomials of evaluation and
interpolation. As we search for efficient algorithms, we see examples of an-
other design strategy called algebraic simplification. When applied to alge-
braic problems, algebraic simplification refers to the process of reexpressing
computational formulas so that the required number of operations to com-
pute these formulas is minimized. One issue we ignore here is the numerical
stability of the resulting algorithms. Though this is often an important
consideration, it is too far from our purposes.

A univariate polynomial is generally written as

A(x) = anxn + an−1x
n−1 + · · · + a1x + a0

where x is an indeterminate and the ai may be integers, floating point num-
bers, or more generally elements of a commutative ring or a field. If an 6= 0,
then n is called the degree of A.

When considering the representation of a polynomial by its coefficients,
there are at least two alternatives. The first calls for storing the degree
followed by degree + 1 coefficients:

(n, an, an−1, . . . , a1, a0)

This is termed the dense representation because it explicitly stores all
coefficients whether or not they are zero. We observe that for a polynomial
such as x1000 + 1 the dense representation is wasteful since it requires 1002
locations although there are only two nonzero terms.

The second representation calls for storing only each nonzero coefficient
and its corresponding exponent; for example, if all the ai are nonzero, then
the polynomial is stored as

(n, an, n − 1, an−1, . . . , 1, a1, 0, a0).

This is termed the sparse representation because the storage depends directly
on the number of nonzero terms and not on the degree. For a polynomial
of degree n, all of whose coefficients are nonzero, this second representa-
tion requires roughly twice the storage of the first. However, that is the

9.2. EVALUATION AND INTERPOLATION 439

1 Algorithm StraightEval(A,n, v)
2 {
3 r := 1; s := a0;
4 for i := 1 to n do
5 {
6 r := r ∗ v;
7 s := s + ai ∗ r;
8 }
9 return s;
10 }

Algorithm 9.1 Straightforward evaluation

worst case. For high-degree polynomials with few nonzero terms, the second
representation is many times better than the first.

Secondarily we note that the terms of a polynomial will often be linked
together rather than sequentially stored. However, we will avoid this com-
plication in the following algorithms and assume that we can access the ith
coefficient by writing ai.

Suppose we are given the polynomial A(x) = anxn + · · ·+a0 and we wish
to evaluate it at a point v, that is, compute A(v). The straightforward or
right-to-left method adds a1v to a0 and a2v

2 to this sum and continues as
described in Algorithm 9.1. The analysis of this algorithm is quite simple:
2n multiplications, n additions, and 2n+2 assignments are made (excluding
the for loop).

An improvement to this procedure was devised by Isaac Newton in 1711.
The same improvement was used by W. G. Horner in 1819 to evaluate the
coefficients of A(x + c). The method came to be known as Horner’s rule.
They rewrote the polynomial as

A(x) = (· · · ((anx + an−1)x + an−2)x + · · · + a1)x + a0

This is our first and perhaps most famous example of algebraic simplifica-
tion. The function for evaluation that is based on this formula is given in
Algorithm 9.2.

Horner’s rule requires n multiplications, n additions, and n + 1 assign-
ments (excluding the for loop). Thus we see that it is an improvement
over the straightforward method by a factor of 2. In fact in Chapter 10
we see that Horner’s rule yields the optimal way to evaluate an nth-degree
polynomial.

440 CHAPTER 9. ALGEBRAIC PROBLEMS

1 Algorithm Horner(A,n, v)
2 {
3 s := an;
4 for i := n − 1 to 0 step −1 do
5 {
6 s := s ∗ v + ai;
7 }
8 return s;
9 }

Algorithm 9.2 Horner’s rule

Now suppose we consider the sparse representation of a polynomial,
A(x) = amxem +· · ·+a1x

e1, where the ai 6= 0 and em > em−1 > · · · > e1 ≥ 0.
The straightforward algorithm (Algorithm 9.1), when generalized to this
sparse case, is given in Algorithm 9.3.

1 Algorithm SStraightEval(A,m, v)
2 // Sparse straightforward evaluation.
3 // m is number of nonzero terms.
4 {
5 s := 0;
6 for i := 1 to m do
7 {
8 s := s + ai ∗ Power(v, ei);
9 }
10 return s;
11 }

Algorithm 9.3 Sparse evaluation

Power(v, e) returns ve. Assuming that ve is computed by repeated mul-
tiplication with v, this operation requires e − 1 multiplications and Algo-
rithm 9.3 requires em + em−1 + · · · + e1 multiplications, m additions, and
m + 1 assignments. This is horribly inefficient and can easily be improved
by an algorithm based on computing

9.2. EVALUATION AND INTERPOLATION 441

1 Algorithm NStraightEval(A,m, v)
2 {
3 s := e0 := 0; t := 1;
4 for i := 1 to m do
5 {
6 r := Power(v, ei − ei−1);
7 t := t ∗ r;
8 s := s + ai ∗ t;
9 }
10 return s;
11 }

Algorithm 9.4 Evaluating a polynomial represented in coefficient-
exponent form

1 Algorithm SHorner(A,m, v)
2 {
3 s := e0 := 0;
4 for i := m to 1 step −1 do
5 {
6 s := (s + ai) ∗ Power(v, ei − ei−1);
7 }
8 return s;
9 }

Algorithm 9.5 Horner’s rule for a sparse representation

ve1, ve2−e1ve1, ve3−e2ve2, . . .

Algorithm 9.4 requires em + m multiplications, 3m + 3 assignments, m
additions, and m subtractions.

A more clever scheme is to generalize Horner’s strategy in the revised
formula

A(x) = (· · · ((amxem−em−1 + am−1)x
em−1−em−2 + · · · + a2)x

e2−e1 + a1)x
e1

442 CHAPTER 9. ALGEBRAIC PROBLEMS

The function of Algorithm 9.5 is based on this formula. The number of
multiplications required is

(em − em−1 − 1) + · · · + (e1 − e0 − 1) + m = em

which is the degree of A. In addition there are m additions, m subtractions,
and m + 2 assignments. Thus we see that Horner’s rule is easily adapted
to either the sparse or the dense polynomial model and in both cases the
number of operations is bounded and linear in the degree. With a little more
work one can find an even better method, assuming a sparse representation,
which requires only m+log2 em multiplications. (See the exercises for a hint.)

Given n points (xi, yi), the interpolation problem is to find the coefficients
of the unique polynomial A(x) of degree ≤ n − 1 that goes through these n
points. Mathematically the answer to this problem was given by Lagrange:

A(x) =
∑

1≤i≤n

∏

i6=j

1≤j≤n

(x − xj)

(xi − xj)

 yi (9.1)

To verify that A(x) does satisfy the n points, we observe that

A(xi) =

∏

i6=j

1≤j≤n

(xi − xj)

(xi − xj)

 yi = yi (9.2)

since every other term becomes zero. The numerator of each term is a
product of n − 1 factors and hence the degree of A is ≤ n − 1.

Example 9.3 Consider the input (0, 1), (1, 10), and (2, 21). Using Equation
9.1, we get

A(x) = (x−1)
(0−1)

(x−2)
(0−2)5 + (x−0)

(1−0)
(x−2)
(1−2)10 + (x−0)

(2−0)
(x−1)
(2−1) 21

= 5
2(x2 − 3x + 2) − 10(x2 − 2x) + 21

2 (x2 − x)

= 3x2 + 2x + 5

We can verify that A(0) = 5, A(1) = 10, and A(2) = 21. 2

We now give an algorithm (Algorithm 9.6) that produces the coefficients
of A(x) using Equation 9.1. We need to perform some addition and mul-
tiplication of polynomials. So we assume that the operators +, ∗, /, and =
have been overloaded to take polynomials as operands.

9.2. EVALUATION AND INTERPOLATION 443

1 Algorithm Lagrange(X,Y, n,A)
2 // X and Y are one-dimensional arrays containing
3 // n points (xi, yi), 1 ≤ i ≤ n. A is a
4 // polynomial that interpolates these points.
5 {
6 // poly is a polynomial.
7 A := 0;
8 for i := 1 to n do
9 {
10 poly := 1; denom := 1;
11 for j := 1 to n do
12 if (i 6= j) then
13 {
14 poly := poly ∗ (x − X[j]);
15 // x − X[j] is a degree one polynomial in x.
16 denom := denom ∗ (X[i] − X[j]);
17 }
18 A := A + (poly ∗ Y [i]/denom);
19 }
20 }

Algorithm 9.6 Lagrange interpolation

An analysis of the computing time of Lagrange is instructive. The if
statement is executed n2 times. The time to compute each new value of
denom is one subtraction and one multiplication, but the execution of ∗ (as
applied to polynomials) requires more than constant time per call. Since the
degree of x − X[j] is one, the time for one execution of ∗ is proportional to
the degree of poly, which is at most j − 1 on the jth iteration.

Therefore the total cost of the polynomial multiplication step is

∑

1≤i≤n

∑

1≤j≤n

(j − 1) =
∑

1≤i≤n

(
n(n + 1)

2
− n

)

= n2(n + 1)/2 − n2

Thus
∑

1≤i≤n

∑

1≤j≤n

(j − 1) = O(n3) (9.3)

444 CHAPTER 9. ALGEBRAIC PROBLEMS

This result is discouraging because it is so high. Perhaps we should search
for a better method. Suppose we already have an interpolating polynomial
A(x) such that A(xi) = yi for 1 ≤ i ≤ n and we want to add just one
more point (xn+1, yn+1). How would we compute this new interpolating
polynomial given the fact that A(x) was already available? If we could solve
this problem efficiently, then we could apply our solution n times to get an
n-point interpolating polynomial.

Let Gj−1(x) interpolate j − 1 points (xk, yk), 1 ≤ k < j, so that
Gj−1(xk) = yk. Also let Dj−1(x) = (x − x1) · · · (x − xj−1). Then we can
compute Gj(x) by the formula

Gj(x) = [yj − Gj−1(xj)]
Dj−1(x)

Dj−1(xj)
+ Gj−1(x) (9.4)

We observe that

Gj(xk) = [yj − Gj−1(xj)]
Dj−1(xk)

Dj−1(xj)
+ Gj−1(xk)

but Dj−1(xk) = 0 for 1 ≤ k < j. So

Gj(xk) = Gj−1(xk) = yk

Also we observe that

Gj(xj) = [yj − Gj−1(xj)]
Dj−1(xj)

Dj−1(xj)
+ Gj−1(xj)

= yj − Gj−1(xj) + Gj−1(xj)

= yj

Example 9.4 Consider again the input (0, 5), (1, 10), and (2, 21). Here
G1(x) = 5 and D1(x) = (x − x1) = x.

G2(x) = [y2 − G1(x2)]
D1(x)

D1(x2)
+ G1(x) = (10 − 5)

x

1
+ 5 = 5x + 5

Also, D2(x) = (x − x1)(x − x2) = (x − 0)(x − 1) = x2 − x. Finally,

G3(x) = [y3 − G2(x3)]
D2(x)

D2(x3)
+ G2(x)

= [21 − 15]
x2 − x

2
+ (5x + 5) = 3x2 + 2x + 5 2

9.2. EVALUATION AND INTERPOLATION 445

Having verified that this formula is correct, we present an algorithm (Al-
gorithm 9.7) for computing the interpolating polynomial that is based on
Equation 9.4. Notice that from the equation, two applications of Horner’s
rule are required, one for evaluating Gj−1(x) at xj and the other for evalu-
ating Dj−1(x) at xj .

1 Algorithm Interpolate(X,Y, n,G)
2 // Assume n ≥ 2. X[1 : n] and Y [1 : n] are the
3 // n pairs of points. The unique interpolating
4 // polynomial of degree < n is returned in G.
5 {
6 // D is a polynomial.
7 G := Y [1]; // G begins as a constant.
8 D := x − X[1]; // D is a linear polynomial.
9 for j := 2 to n do
10 {
11 denom := Horner(D, j − 1,X[j]); // Evaluate D at X[j].
12 num := Horner(G, j − 2,X[j]); // Evaluate G at X[j].
13 G := G + (D ∗ (Y [j] − num)/denom);
14 D := D ∗ (x − X[j]);
15 }
16 }

Algorithm 9.7 Newtonian interpolation

On the jth iteration D has degree j−1 and G has degree j−2. Therefore
the invocations of Horner require

∑

1≤j≤n−1

(j − 1 + j − 2) = n(n − 1) − 3(n − 1) = n2 − 4n + 3 (9.5)

multiplications in total. The term (Y [j]− num)/denom in Algorithm 9.7 is
a constant. Multiplying this constant by D requires j multiplications and
multiplying D by x − X[j] requires j multiplications. The addition with G
requires zero multiplications. Thus the remaining steps require

∑

1≤j≤n−1

(2j) = n(n − 1) (9.6)

operations, so the entire algorithm Interpolate requires O(n2) operations.

446 CHAPTER 9. ALGEBRAIC PROBLEMS

In conclusion we observe that for a dense polynomial of degree n, evalu-
ation can be accomplished using O(n) operations or, for a sparse polynomial
with m nonzero terms and degree n, evaluation can be done using at most
O(m + n) = O(n) operations. Also, given n points, we can produce the
interpolating polynomial in O(n2) time. In Chapter 10 we discuss the ques-
tion of the optimality of Horner’s rule for evaluation. Section 9.5 presents
an even faster way to perform the interpolation of n points as well as the
evaluation of a polynomial at n points.

EXERCISES

1. Devise a divide-and-conquer algorithm to evaluate a polynomial at a
point. Analyze carefully the time for your algorithm. How does it
compare to Horner’s rule?

2. Present algorithms for overloading the operators + and ∗ in the case
of polynomials.

3. Assume that polynomials such as A(x) = anxn + · · · + a0 are repre-
sented using the dense form. Present an algorithm that overloads the
operators + and = to perform the instruction r = s + t;, where r, s,
and t are arbitrary polynomials.

4. Using the same assumptions as for Exercise 3, write an algorithm to
perform r = s ∗ t;.

5. Let A(x) = anxn + · · · + a0, p = n/2 and q = ⌈n/2⌉. Then a variation
of Horner’s rule states that

A(x) = (· · · (a2px
2 + a2p−2)x

2 + · · ·)x2 + a0

+((· · · (a2q−1x
2 + a2q−3)x

2 + · · ·)x2 + a1)x

Show how to use this formula to evaluate A(x) at x = v and x = −v.

6. Given the polynomial A(x) in Exercise 5 devise an algorithm that
computes the coefficients of polynomial A(x + c) for some constant c.

7. Suppose the polynomial A(x) has real coefficients but we wish to eval-
uate A at the complex number x = u+ iv, u and v being real. Develop
an algorithm to do this.

8. Suppose the polynomial A(x) = amxem + · · ·+a1x
e1, where ai 6= 0 and

em > em−1 > · · · > e1 ≥ 0, is represented using the sparse form. Write
a function PAdd(r, s, t) that computes the sum of two such polynomials
r and s and stores the result in t.

9.3. THE FAST FOURIER TRANSFORM 447

9. Using the same assumptions as in Exercise 8, write a function
PMult(r, s, t) that computes the product of the polynomials r and s
and places the result in t. What is the computing time of your func-
tion?

10. Determine the polynomial of smallest degree that interpolates the
points (0, 1), (1, 2), and (2, 3).

11. Given n points (xi, yi), 1 ≤ i ≤ n, devise an algorithm that computes
both the interpolating polynomial A(x) and its derivative at the same
time. How efficient is your algorithm?

12. Prove that the polynomial of degree ≤ n that interpolates n+1 points
is unique.

13. The binary method for exponentiation uses the binary expansion of
the exponent n to determine when to square the temporary result and
when to multiply it by x. Since there are ⌊log n⌋ + 1 bits in n, the
algorithm requires O(log n) operations; this algorithm is an order of
magnitude faster than iteration. The method appears as Algorithm
1.20. Show how to use the binary method to evaluate a sparse poly-
nomial in time m + log em.

14. Suppose you are given the real and imaginary parts of two complex
numbers. Show that the real and imaginary parts of their product can
be computed using only three multiplications.

15. (a) Show that the polynomials ax + b and cx + d can be multiplied
using only three scalar multiplications.

(b) Employ the above algorithm to devise a divide-and-conquer al-
gorithm to multiply two given nth degree polynomials in time
Θ(nlog2 3).

16. The Fibonacci sequence is defined as f0 = 0, f1 = 1, and fn = fn−1 +
fn−2 for n ≥ 2. Give an O(log n) algorithm to compute fn. (Hint:

[
fn−1
fn

]
=

[
0 1
1 1

] [
fn−2
fn−1

]
.)

9.3 THE FAST FOURIER TRANSFORM

If one is able to devise an algorithm that is an order of magnitude faster than
any previous method, that is a worthy accomplishment. When the improve-
ment is for a process that has many applications, then that accomplishment
has a significant impact on researchers and practitioners. This is the case

448 CHAPTER 9. ALGEBRAIC PROBLEMS

of the fast Fourier transform. No algorithm improvement has had a greater
impact in the recent past than this one. The Fourier transform is used by
electrical engineers in a variety of ways including speech transmission, coding
theory, and image processing. But before this fast algorithm was developed,
the use of this transform was considered impractical.

The Fourier transform of a continuous function a(t) is given by

A(f) =

∫ ∞

−∞
a(t)e2πift dt (9.7)

whereas the inverse transform of A(f) is

a(t) =
1

2π

∫ ∞

−∞
A(f)e−2πift df (9.8)

The i in the above two equations stands for the square root of −1. The con-
stant e is the base of the natural logarithm. The variable t is often regarded
as time, and f is taken to mean frequency. Then the Fourier transform is
interpreted as taking a function of time into a function of frequency.

Corresponding to this continuous Fourier transform is the discrete Fourier
transform which handles sample points of a(t), namely, a0, a1, . . . , aN−1. The
discrete Fourier transform is defined by

Aj =
∑

0≤k≤N−1

ake
2πijk/N , 0 ≤ j ≤ N − 1 (9.9)

and the inverse is

ak =
1

N

∑

0≤j≤N−1

Aje
−2πijk/N , 0 ≤ k ≤ N − 1 (9.10)

In the discrete case a set of N sample points is given and a resulting set
of N points is produced. An important fact to observe is the close connec-
tion between the discrete Fourier transform and polynomial evaluation. If
we imagine the polynomial

a(x) = aN−1x
N−1 + aN−2x

N−2 + · · · + a1x + a0

then the Fourier element Aj is the value of a(x) at x = wj , where w = e2πi/N .
Similarly for the inverse Fourier transform if we imagine the polynomial with
the Fourier coefficients

A(x) = AN−1x
N−1 + AN−2x

N−2 + · · · + A1x + A0

9.3. THE FAST FOURIER TRANSFORM 449

then each ak is the value of A(x)/N at x = (w−1)k, where w = e2πi/N .
Thus, the discrete Fourier transform corresponds exactly to the evaluation
of a polynomial at N points: w0, w1, . . . , wN−1.

From the preceding section we know that we can evaluate an Nth-degree
polynomial at N points using O(N2) operations. We apply Horner’s rule
once for each point. The fast Fourier transform (abbreviated FFT) is an
algorithm for computing these N values using only O(N log N) operations.
This algorithm was popularized by J. M. Cooley and J. W. Tukey in 1965,
and the long history of this method was traced by J. M. Cooley, P. A. Lewis
and P. D. Welch.

A hint that the Fourier transform can be computed faster than by Horner’s
rule comes from observing that the evaluation points are not arbitrary but
are in fact very special. They are the N powers wj for 0 ≤ j ≤ N −1, where
w = e2πi/N . The point w is a primitive Nth root of unity in the complex
plane.

Definition 9.1 An element w in a commutative ring is called a primitive
Nth root of unity if

1. w 6= 1

2. wN = 1

3.
∑

0≤p≤N−1 wjp = 0, 1 ≤ j ≤ N − 1 2

Example 9.5 Let N = 4. Then, w = eπi/2 = cos(π/2) + i sin(π/2) = i.
Thus, w 6= 1, and w4 = i4 = 1. Also,

∑
0≤p≤3 wjp = 1 + ij + i2j + i3j = 0. 2

We now present two simple properties of Nth roots from which we can
see how the FFT algorithm can easily be understood.

Theorem 9.1 Let N = 2n and suppose w is a primitive Nth root of unity.
Then −wj = wj+n.

Proof: Here (wj+n)2 = (wj)2(wn)2 = (wj)2(w2n) = (wj)2 since wn = 1.
Since the wj are distinct, we know that wj 6= wj+n, so we can conclude that
wj+n = −wj . 2

Theorem 9.2 Let N = 2n and w a primitive Nth root of unity. Then w2

is a primitive nth root of unity.

Proof: Since wN = w2n = 1, (w2)n = 1; this implies w2 is an nth root of
unity. In addition we observe that (w2)j 6= 1 for 1 ≤ j ≤ n−1 since otherwise
we would have wk = 1 for 1 ≤ k < 2n = N which would contradict the fact

450 CHAPTER 9. ALGEBRAIC PROBLEMS

that w is a primitive Nth root of unity. Therefore w2 is a primitive nth root
of unity. 2

From this theorem we can conclude that if wj , 0 < j ≤ N − 1, are
the primitive Nth roots of unity and N = 2n, then w2j , 0 < j ≤ n − 1, are
primitive nth roots of unity. Using these two theorems, we are ready to show
how to derive a divide-and-conquer algorithm for the Fourier transform. The
complexity of the algorithm is O(N log N), an order of magnitude faster than
the O(N2) of the conventional algorithm which uses polynomial evaluation.

Again let aN−1, . . . , a0 be the coefficients to be transformed and let
a(x) = aN−1x

N−1 + · · · + a1x + a0. We break a(x) into two parts, one
of which contains even-numbered exponents and the other odd-numbered
exponents.

a(x) = (aN−1x
N−1 + aN−3x

N−3 + · · · + a1x)

+ (aN−2x
N−2 + · · · + a2x

2 + a0)

Letting y = x2, we can rewrite a(x) as a sum of two polynomials.

a(x) = (aN−1y
n−1 + aN−3y

n−2 + · · · + a1)x

+ (aN−2y
n−1 + aN−4y

n−2 + · · · + a0)

= c(y)x + b(y)

Recall that the values of the Fourier transform are a(wj), 0 ≤ j ≤ N − 1.
Therefore the values of a(x) at the points wj , 0 ≤ j ≤ n − 1, are now
expressible as

a(wj) = c(w2j)wj + b(w2j)

a(wj+n) = −c(w2j)wj + b(w2j)

These two formulas are computationally valuable in that they reveal how
to take a problem of size N and transform it into two identical problems of
size n = N/2. These subproblems are the evaluation of b(y) and c(y), each
of degree n − 1, at the points (w2)j , 0 ≤ j ≤ n − 1, and these points are
primitive nth roots. This is an example of divide-and-conquer, and we can
apply the divide-and-conquer strategy again as long as the number of points
remains even. This leads us to always choose N as a power of 2, N = 2m,
for then we can continue to carry out the splitting procedure until a trivial
problem is reached, namely, evaluating a constant polynomial.

FFT (Algorithm 9.8) combines all these ideas into a recursive version of
the fast Fourier transform algorithm. Dense representation for polynomials

9.3. THE FAST FOURIER TRANSFORM 451

1 Algorithm FFT(N, a(x), w, A)
2 // N = 2m, a(x) = aN−1x

N−1 + · · · + a0, and w is a
3 // primitive Nth root of unity. A[0 : N − 1] is set to
4 // the values a(wj), 0 ≤ j ≤ N − 1.
5 {
6 // b and c are polynomials.
7 // B,C, and wp are complex arrays.
8 if N = 1 then A[0] := a0;
9 else
10 {
11 n := N/2;
12 b(x) := aN−2x

n−1 + · · · + a2x + a0;
13 c(x) := aN−1x

n−1 + · · · + a3x + a1;
14 FFT(n, b(x), w2, B);
15 FFT(n, c(x), w2, C);
16 wp[−1] := 1/w;
17 for j := 0 to n − 1 do
18 {
19 wp[j] := w ∗ wp[j − 1];
20 A[j] := B[j] + wp[j] ∗ C[j];
21 A[j + n] := B[j] − wp[j] ∗ C[j];
22 }
23 }
24 }

Algorithm 9.8 Recursive fast Fourier transform

is assumed. We overload the operators +, −, ∗, and = with regard to
complex numbers.

Now let us derive the computing time of FFT. Let T (N) be the time for
the algorithm applied to N inputs. Then we have

T (N) = 2T (N/2) + DN

where D is a constant and DN is a bound on the time needed to form
b(x), c(x), and A. Since T (1) = d, where d is another constant, we can
repeatedly simplify this recurrence relation to get

T (2m) = 2T (2m−1) + D2m

452 CHAPTER 9. ALGEBRAIC PROBLEMS

=
...

= Dm2m + T (1)2m

= DN log2 N + dN

= O(N log2 N)

Suppose we return briefly to the problem considered at the beginning of
this chapter, the multiplication of polynomials. The transformation tech-
nique calls for evaluating A(x) and B(x) at 2N + 1 points (where N is the
degree of A and B), computing the 2N + 1 products A(xi)B(xi), and then
finding the product A(x)B(x) in coefficient form by computing the inter-
polating polynomial that satisfies these points. In Section 9.2 we saw that
N -point evaluation and interpolation required O(N2) operations, so that
no asymptotic improvement is gained by using this transformation over the
conventional multiplication algorithm. However, in this section we have seen
that if the points are chosen to be the N = 2m distinct powers of a primi-
tive Nth root of unity, then evaluation and interpolation can be done using
at most O(N log N) operations. Therefore by using the fast Fourier trans-
form algorithm, we can multiply two N -degree polynomials in O(N log N)
operations.

The divide-and-conquer strategy plus some simple properties of primitive
Nth roots of unity leads to a very nice conceptual framework for understand-
ing the FFT. The above analysis shows that asymptotically it is better than
the direct method by an order of magnitude. However the version we have
produced uses auxiliary space for b, c,B, and C. We need to study this
algorithm more closely to eliminate this overhead.

Example 9.6 Consider the case in which a(x) = a3x
3 + a2x

2 + a1x + a0.
Let us walk through the execution of Algorithm 9.8 on this input. Here
N = 4, n = 2, and w = i. The polynomials b and c are constructed as
b(x) = a2x + a0 and c(x) = a3x + a1. Function FFT is invoked on b(x)
and c(x) to get B[0] = a0 + a2, B[1] = a0 + a2w

2, C[0] = a1 + a3, and
C[1] = a1 + a3w

2.

In the for loop, the array A[] is modified. When j = 0, wp[0] = 1.
Thus, A[0] = B[0] + C[0] = a0 + a1 + a2 + a3 and A[2] = B[0] − C[0] =
a0 + a2 − a1 − a3 = a0 + a1w

2 + a2w
4 + a3w

6 (since w2 = −1, w4 = 1,
and w6 = −1). When j = 1, wp[1] = w. Then A[1] = B[1] + wC[1]
= a0+a2w

2+w(a1+a3w
2) = a0+a1w+a2w

2+a3w
3 and A[3] = B[1]−wC[1]

= a0+a2w
2−w(a1+a3w

2) = a0−a1w+a2w
2−a3w

3 = a0+a1w
3+a2w

6+a3w
9

(since w2 = −1, w4 = 1, and w6 = −1). 2

