CSE 4502/5717 Big Data Analytics
 Fall 2022 Exam 3 Helpsheet

1. Association Rules Mining. An itemset is a set of items. A k-itemset is an itemset of size k. A transaction is an itemset. A rule is represented as $X \rightarrow Y$ where $X \neq \emptyset, Y \neq \emptyset, X \cap Y=\emptyset$.
We are given a database $D B$ of transactions and the number of transactions in the database is n. Let I be the set of distinct items in the database and let $d=|I|$.

For an itemset X, we define $\sigma(X)$ as the number of transactions in which X occurs, i.e. $\sigma(X)=\mid\{T \in$ $D B \mid X \subseteq T\} \mid$ The support of any rule $X \rightarrow Y$ is $\frac{\sigma(X \cup Y)}{n}$. The confidence of any rule $X \rightarrow Y$ is $\frac{\sigma(X \cup Y)}{\sigma(X)}$.
Association Rules Mining is defined as follows.
Input: A DB of transactions and two numbers: minSupport and minConfidence.
Output: All rules $X \rightarrow Y$ whose support is \geq minSupport and whose confidence is \geq minConfidence.
An itemset is frequent if $\sigma(X) \geq n \cdot$ minSupport
We discussed the Apriori algorithm for finding all the frequent itemsets. This algorithm is based on the a priori principle: If X is not frequent then no superset of X is frequent. Also, If X is frequent then every subset of X is also frequent.
The pseudocode for the Apriori algorithm is given next.

```
Algorithm 1: Apriori algorithm
    \(k:=1\);
    Compute \(F_{1}=\{i \in I \mid \sigma(i) \geq n \cdot\) minSupport \(\}\);
    while \(F_{k} \neq \emptyset\) do
        \(k:=k+1\);
        Generate candidates \(C_{k}\) from \(F_{k-1}\);
        for \(T \in D B\) do
            for \(C \in C_{k}\) do
                if \(C \subseteq T\) then
                \(\sigma(C):=\sigma(C)+1 ;\)
        \(F_{k}:=\emptyset ;\)
        for \(C \in C_{k}\) do
            if \(\sigma(C) \geq n \cdot\) minSupport then
                \(F_{k}:=F_{k} \cup\{C\} ;\)
```

We can use a hash tree to compute the support for each candidate itemset.
We also presented a randomized Monte Carlo algorithm for identifying frequent itemsets. The idea was to pick a random sample, identify frequent itemsets in the sample (with a smaller support) and output these. We proved that the output of this algorithm will be correct with a high probability using the Chernoff bounds:

If X is $B(n, p)$, then the following are true:

$$
\begin{aligned}
& \text { Prob. }[X \geq(1+\epsilon) n p] \leq \exp \left(-\epsilon^{2} n p / 3\right) \\
& \text { Prob. }[X \leq(1-\epsilon) n p] \leq \exp \left(-\epsilon^{2} n p / 2\right),
\end{aligned}
$$

for any $0<\epsilon<1$.
2. Polynomial Arithmetic. A degree- n polynomial can be evaluated at a given point in $O(n)$ time. Lagrangian interpolation algorithm runs in $O\left(n^{3}\right)$ time whereas Newton's interpolation algorithm takes $O\left(n^{2}\right)$ time.

Two degree- n polynomials can be multiplied in $O(n \log n)$ time. A degree- n polynomial can be evaluated at n given arbitrary points in $O\left(n \log ^{2} n\right)$ time. Also, interpolation of a polynomial presented in value form at n arbitrary points can be done in $O\left(n \log ^{3} n\right)$ time.
3. Linear Regression. Let $f: \Re^{n} \rightarrow \Re$ be any function on n variables. Given a series of examples to learn f, we can fit them using a linear model: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}$. Linear regression computes the optimal values for the parameters by equating the gradient to zero. Let the examples be $\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{n} ; y_{i}\right)$ for $1 \leq i \leq m$. Let $\boldsymbol{w}=\left(w_{1} w_{2} \cdots w_{n}\right)^{T}$ be the parameter vector. Also, let

$$
\boldsymbol{X}=\left[\begin{array}{llll}
x_{1}^{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
x_{2}^{1} & x_{2}^{2} & \cdots & x_{2}^{n} \\
\cdots & & & \\
x_{m}^{1} & x_{m}^{2} & \cdots & x_{m}^{n}
\end{array}\right]
$$

Then, we showed that the optimal value for \boldsymbol{w} is $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$ where $\boldsymbol{y}=\left(\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{m}\end{array}\right)^{T}$.
4. Neural Networks. We showed that any Boolean function can be realized using a multilevel perceptron. We also showed that both forward and back propagation on a feed-forward neural network can be completed in $O(|V|+|E|)$ time, where $G(V, E)$ is the graph that represents this neural network.

