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1. Association Rules Mining. An itemset is a set of items. A k-itemset is an itemset of size k. A
transaction is an itemset. A rule is represented as X — Y where X #0,Y #0, X NY = 0.

We are given a database DB of transactions and the number of transactions in the database is n. Let
I be the set of distinct items in the database and let d = |I|.

For an itemset X, we define o(X) as the number of transactions in which X occurs, i.e. o(X) = |{T €

DB|X C T}| The support of any rule X — Y is @ The confidence of any rule X — Y is
o(XUY)
o(X) -

Association Rules Mining is defined as follows.

Input: A DB of transactions and two numbers: minSupport and minConfidence.
Output: All rules X — Y whose support is > minSupport and whose confidence is > minConfidence.

An itemset is frequent if o(X) > n - minSupport

We discussed the Apriori algorithm for finding all the frequent itemsets. This algorithm is based on the
a priori principle: If X is not frequent then no superset of X is frequent. Also, If X is frequent then
every subset of X is also frequent.

The pseudocode for the Apriori algorithm is given next.

Algorithm 1: Apriori algorithm

k:=1;
Compute F; = {i € I|o(i) > n - minSupport };
while F}, # () do
k:=k+1;
Generate candidates C, from Fj._1;
for T'e DB do
for C € Cj, do
if C C T then
L L o(C):=0(C)+1,;
Fk = @;
for C € Cj, do
if o(C) > n - minSupport then
| Fi:=FUu{C}

We can use a hash tree to compute the support for each candidate itemset.

We also presented a randomized Monte Carlo algorithm for identifying frequent itemsets. The idea was
to pick a random sample, identify frequent itemsets in the sample (with a smaller support) and output
these. We proved that the output of this algorithm will be correct with a high probability using the
Chernoff bounds:

If X is B(n,p), then the following are true:
Prob.[X > (1 + €)np|] < exp(—€e>np/3)

Prob.[X < (1 — €)np|] < exp(—€e*np/2),



for any 0 < e < 1.

. Polynomial Arithmetic. A degree-n polynomial can be evaluated at a given point in O(n) time.
Lagrangian interpolation algorithm runs in O(n?) time whereas Newton’s interpolation algorithm takes
O(n?) time.

Two degree-n polynomials can be multiplied in O(n logn) time. A degree-n polynomial can be evaluated
at n given arbitrary points in O(n log? n) time. Also, interpolation of a polynomial presented in value
form at n arbitrary points can be done in O(n log® n) time.

. Linear Regression. Let f : " — R be any function on n variables. Given a series of examples to

learn f, we can fit them using a linear model: f(z1,z2,...,2,) = wix] + waxe + - -+ + WpTy. Linear
regression computes the optimal values for the parameters by equating the gradient to zero. Let the
examples be (x},22,..., 2% y;) for 1 <i <m. Let w = (w; wy -+ wy)T be the parameter vector. Also,
let
:L'% x% PR x?
1 2
X _ x2 l‘2 .« e l‘g
':L",]:n/ xgn PR x:”n

Then, we showed that the optimal value for w is (X7 X )~ !XTy where y = (y1 y2 -+ ym)".

. Neural Networks. We showed that any Boolean function can be realized using a multilevel perceptron.
We also showed that both forward and back propagation on a feed-forward neural network can be
completed in O(|V| + |E|) time, where G(V, E) is the graph that represents this neural network.



