CSE 4502/5717 Big Data Analytics Fall 2022 Exam 3 Helpsheet

1. Association Rules Mining. An itemset is a set of items. A k-itemset is an itemset of size k. A transaction is an itemset. A rule is represented as $X \to Y$ where $X \neq \emptyset, Y \neq \emptyset, X \cap Y = \emptyset$.

We are given a database DB of transactions and the number of transactions in the database is n. Let I be the set of distinct items in the database and let d = |I|.

For an itemset X, we define $\sigma(X)$ as the number of transactions in which X occurs, i.e. $\sigma(X) = |\{T \in DB | X \subseteq T\}|$ The **support** of any rule $X \to Y$ is $\frac{\sigma(X \cup Y)}{n}$. The **confidence** of any rule $X \to Y$ is $\frac{\sigma(X \cup Y)}{\sigma(X)}$.

Association Rules Mining is defined as follows.

Input: A DB of transactions and two numbers: minSupport and minConfidence.

Output: All rules $X \to Y$ whose support is $\geq \min$ Support and whose confidence is $\geq \min$ Confidence.

An itemset is **frequent** if $\sigma(X) \geq n \cdot \min \text{Support}$

We discussed the Apriori algorithm for finding all the frequent itemsets. This algorithm is based on the a priori principle: If X is not frequent then no superset of X is frequent. Also, If X is frequent then every subset of X is also frequent.

The pseudocode for the Apriori algorithm is given next.

Algorithm 1: Apriori algorithm

We can use a hash tree to compute the support for each candidate itemset.

We also presented a randomized Monte Carlo algorithm for identifying frequent itemsets. The idea was to pick a random sample, identify frequent itemsets in the sample (with a smaller support) and output these. We proved that the output of this algorithm will be correct with a high probability using the Chernoff bounds:

If X is B(n,p), then the following are true:

$$Prob.[X \ge (1+\epsilon)np] \le \exp(-\epsilon^2 np/3)$$

 $Prob.[X \le (1-\epsilon)np] \le \exp(-\epsilon^2 np/2),$

for any $0 < \epsilon < 1$.

- 2. Polynomial Arithmetic. A degree-n polynomial can be evaluated at a given point in O(n) time. Lagrangian interpolation algorithm runs in $O(n^3)$ time whereas Newton's interpolation algorithm takes $O(n^2)$ time.
 - Two degree-n polynomials can be multiplied in $O(n \log n)$ time. A degree-n polynomial can be evaluated at n given arbitrary points in $O(n \log^2 n)$ time. Also, interpolation of a polynomial presented in value form at n arbitrary points can be done in $O(n \log^3 n)$ time.
- 3. **Linear Regression.** Let $f: \Re^n \to \Re$ be any function on n variables. Given a series of examples to learn f, we can fit them using a linear model: $f(x_1, x_2, \ldots, x_n) = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$. Linear regression computes the optimal values for the parameters by equating the gradient to zero. Let the examples be $(x_i^1, x_i^2, \ldots, x_i^n; y_i)$ for $1 \le i \le m$. Let $\mathbf{w} = (w_1 \ w_2 \ \cdots \ w_n)^T$ be the parameter vector. Also, let

$$m{X} = egin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^n \ x_2^1 & x_2^2 & \cdots & x_2^n \ \cdots & & & & \ x_m^1 & x_m^2 & \cdots & x_m^n \end{bmatrix}.$$

Then, we showed that the optimal value for \boldsymbol{w} is $(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}$ where $\boldsymbol{y}=(y_1\ y_2\ \cdots\ y_m)^T$.

4. **Neural Networks.** We showed that any Boolean function can be realized using a multilevel perceptron. We also showed that both forward and back propagation on a feed-forward neural network can be completed in O(|V| + |E|) time, where G(V, E) is the graph that represents this neural network.