
CSE 4502/5717 Big Data Analytics

Fall 2022 Exam 3 Helpsheet

1. Association Rules Mining. An itemset is a set of items. A k-itemset is an itemset of size k. A

transaction is an itemset. A rule is represented as X → Y where X ̸= ∅, Y ̸= ∅, X ∩ Y = ∅.
We are given a database DB of transactions and the number of transactions in the database is n. Let

I be the set of distinct items in the database and let d = |I|.
For an itemset X, we define σ(X) as the number of transactions in which X occurs, i.e. σ(X) = |{T ∈
DB|X ⊆ T}| The support of any rule X → Y is σ(X∪Y )

n . The confidence of any rule X → Y is
σ(X∪Y )
σ(X) .

Association Rules Mining is defined as follows.

Input: A DB of transactions and two numbers: minSupport and minConfidence.

Output: All rules X → Y whose support is ≥ minSupport and whose confidence is ≥ minConfidence.

An itemset is frequent if σ(X) ≥ n ·minSupport

We discussed the Apriori algorithm for finding all the frequent itemsets. This algorithm is based on the

a priori principle: If X is not frequent then no superset of X is frequent. Also, If X is frequent then

every subset of X is also frequent.

The pseudocode for the Apriori algorithm is given next.

Algorithm 1: Apriori algorithm

k := 1;

Compute F1 = {i ∈ I|σ(i) ≥ n ·minSupport};
while Fk ̸= ∅ do

k := k + 1;

Generate candidates Ck from Fk−1;

for T ∈ DB do

for C ∈ Ck do

if C ⊆ T then

σ(C) := σ(C) + 1;

Fk := ∅;
for C ∈ Ck do

if σ(C) ≥ n ·minSupport then

Fk := Fk ∪ {C};

We can use a hash tree to compute the support for each candidate itemset.

We also presented a randomized Monte Carlo algorithm for identifying frequent itemsets. The idea was

to pick a random sample, identify frequent itemsets in the sample (with a smaller support) and output

these. We proved that the output of this algorithm will be correct with a high probability using the

Chernoff bounds:

If X is B(n, p), then the following are true:

Prob.[X ≥ (1 + ϵ)np] ≤ exp(−ϵ2np/3)

Prob.[X ≤ (1− ϵ)np] ≤ exp(−ϵ2np/2),



for any 0 < ϵ < 1.

2. Polynomial Arithmetic. A degree-n polynomial can be evaluated at a given point in O(n) time.

Lagrangian interpolation algorithm runs in O(n3) time whereas Newton’s interpolation algorithm takes

O(n2) time.

Two degree-n polynomials can be multiplied in O(n log n) time. A degree-n polynomial can be evaluated

at n given arbitrary points in O(n log2 n) time. Also, interpolation of a polynomial presented in value

form at n arbitrary points can be done in O(n log3 n) time.

3. Linear Regression. Let f : ℜn → ℜ be any function on n variables. Given a series of examples to

learn f , we can fit them using a linear model: f(x1, x2, . . . , xn) = w1x1 + w2x2 + · · · + wnxn. Linear

regression computes the optimal values for the parameters by equating the gradient to zero. Let the

examples be (x1i , x
2
i , . . . , x

n
i ; yi) for 1 ≤ i ≤ m. Let w = (w1 w2 · · · wn)

T be the parameter vector. Also,

let

X =


x11 x21 · · · xn1
x12 x22 · · · xn2
· · ·
x1m x2m · · · xnm

 .

Then, we showed that the optimal value for w is (XTX)−1XTy where y = (y1 y2 · · · ym)T .

4. Neural Networks. We showed that any Boolean function can be realized using a multilevel perceptron.

We also showed that both forward and back propagation on a feed-forward neural network can be

completed in O(|V |+ |E|) time, where G(V,E) is the graph that represents this neural network.


