CSE 4502/5717 Big Data Analytics
 Exam II; November 9, 2021

Note: You are supposed to give proofs to the time and processor bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. (20 points) Input is a sequence X of n real numbers striped across D disks. It is known that the number of distinct elements in X is only C (where C is a constant). The goal is to sort X. Show that this can be done in two read passes through the data. Assume that $M=\Theta(B D)$, where M is the core memory size and B is the block size.
2. (20 points) Input is a sequence X with n elements that is residing in D disks. The problem is to identify the $i^{\text {th }}$ smallest element of X. Assume that the core memory size is $M=\Theta(B D)$, B being the block size. Show how to solve this problem in $O\left(k \frac{n}{B D}\right)$ parallel I/O operations, where $k=\left\lceil\frac{i}{B D}\right\rceil$. (You can assume that the elements of X are distinct).
3. (20 points) Input are two strings S_{1} and S_{2} of length n each from an alphabet Σ of constant size, and an integer l. The problem is to check if there exist a substring X in S_{1} and a substring Y in S_{2} such that $|X|=|Y|,|X| \geq l$, and the Hamming distance between X and Y is no more than 1. (Given two strings of the same length, the Hamming distance between them is defined as the number of positions in which they differ. For instance, if $A=$ gacgta and $B=$ gccatc, then the Hamming distance between A and B is 3 since they differ in positions 2, 4, and 6.) Present an algorithm to solve this problem in $O\left(n^{2}\right)$ time.
4. (20 points) Input are k strings $S_{1}, S_{2}, \ldots, S_{k}$ with $\sum_{i=1}^{k}\left|S_{i}\right|=M$. The problem is to identify the longest substring common to all the k input strings. Present an algorithm to solve this problem in $O(k M)$ time.
5. In this problem we are given a text T, a pattern P, and the suffix array S for T. The problem is to identify all the occurrences of P in T. Let $|T|=m$ and $|P|=n$.
(a) (12 points) Present an algorithm to solve this problem in $O(1)$ time using $m n$ arbitrary CRCW PRAM processors.
(b) (8 points) Present an algorithm to solve this problem in $O(1)$ time using $n \sqrt{m}$ arbitrary CRCW PRAM processors. (Assume that the number of occurrences of P in T is no more than 1).

Specifically, the output should be an array $A[1: m]$ such that $A[i]=1$ if $P=T_{i}$; (If $T=t_{1} t_{2} \cdots t_{m}$ then $\left.T_{i}=t_{i} t_{i+1} \cdots t_{i+n-1}\right)$; Also, $A[i]=0$ if $P \neq T_{i}$, for $1 \leq i \leq m$.

