
CSE 4502/5717 Big Data Analytics. Fall 2021

Exam II Solutions

1. Do one read pass through the data to identify the C distinct elements in X. Let the distinct

elements be d1, d2, . . . , dC (in sorted order).

In the main memory keep C buffers, one for each possible value di, 1 ≤ i ≤ C. Each buffer

will be of size BD. Do one more pass. In this pass, bring BD elements from X (residing in

the disks) at a time (in one parallel I/O) and distribute the keys to the buffers (based on the

values of the keys). In the disks we grow C runs R1, R2, . . . , RC . When any buffer i is full,

write these BD elements at the end of Ri and clear this buffer (for any i, 1 ≤ i ≤ C). At the

end of this pass, we would have fully grown the runs R1, R2, . . . , RC .

Note that the first pass and the second pass can indeed be merged into one pass.

In the second pass read and write the runs R1, R2, . . . , RC into one contiguous sequence.

2. The algorithm proceeds in stages. There will be k stages. In the first stage we do one pass

through the data and indentify the set Q of the BD smallest elements of X and store these

BD elements in a buffer Z. This can be done by bringing BD elements at a time into the

core memory and keeping the BD smallest elements seen so far. In another pass of the first

stage, we scan through X and delete from X the elements in Q. Let the sequence of the

remaining elements of X be X ′. X ′ will be written to the disks as a contiguous sequence.

for j = 2 to k do

Let X = X ′; Clear buffer Z;

In one pass through X identify the set Q of the BD smallest elements of X and

store these BD elements in Z;

In another pass, scan through X and delete from X the elements in Q;

Let the sequence of the remaining elements of X be X ′;

Write X ′ to the disks as a contiguous sequence.

The ith smallest element of the original input is in the buffer Z. we perform an appropriate

selection in Z and output that element.

The number of passes taken by the above algorithm is 2k. Thus the total number of parallel

I/O operations is O
(
k n
BD

)
.

3. Consider the following algorithm:

Find the longest common substring R between S1 and S2;

If |R| ≥ l, then output R and stop;

for i = 1 to n do

Let the ith character of S1 be c;

for every character d ∈ Σ− {c} do

Replace the ith character of S1 with d;

Find the longest common substring R between S1 and S2;

If |R| ≥ l, output R and stop;

Switch back the ith character of S1 to c;

Output: “There is no such common substring between S1 and S2;

Note that the longest common substring algorithm is called O(n) times and each call takes

O(n) time. Thus the total run time of the algorithm is O(n2).

4. Here is an algorithm:

Construct a generalized suffix tree Q on S1, S2, . . . , Sk;

for i = 1 to k do

Traverse through Q and label a node u with i

if the subtree rooted at u has a leaf corresponding to a suffix from Si;

Traverse through Q and indentify the node u that has been labelled with 1, 2, . . . , k and

whose string depth is the largest. Output the path label of this node u.

Analysis: Construction of Q takes O(M) time. In the for loop, we traverse through Q k

times. Followed by this, we do one more traversal through Q. Each traversal takes O(M)

time.

Thus the total run time of the algorithm is O(kM).

5. Let SA[1 : m] be the suffix array for T . Initialize A[1 : m] to all zeros. This can be done in

O(1) time using m processors.

(a) We will assign n processors for each entry in SA[1 : m].

for i = 1 to m in parallel do

The n processors associated with the suffix SA[i] will compare the characters

of P with the characters of the suffix SA[i] in parallel and check

if there is a match in O(1) time; If there is a match,

one of these processors will set A[i] to 1;

(b) In problem 5 of Homework 2, you showed that string matching can be done in O(logm)

time. A key step in this algorithm was the fact that using m processors, we can compare

P with any suffix SA[i] and decide if there is match at SA[i], P is greater than the suffix

SA[i], or P is less than the suffix SA[i] in O(1) time.

Partition SA[1 : m] into
√
m intervals [1 :

√
m], [
√
m + 1, 2

√
m], [2

√
m + 1, 3

√
m], etc.

Assign n processors per interval. The n processors associated with any interval will

decide (in O(1) time) if P lies in between the two suffixes corresponding to this interval.

At the end of the above step, we would have identified an interval within which P will

lie. Assign n processors for each suffix in this interval. The n processors associated with

the suffix SA[i] will compare the characters of P with the characters of the suffix SA[i]

in parallel and check if there is a match in O(1) time; If there is a match, one of these

processors will set A[i] to 1;

