CSE 4502/5717 Big Data Analytics. Fall 2021

Exam II Solutions

1. Do one read pass through the data to identify the C distinct elements in X. Let the distinct elements be $d_{1}, d_{2}, \ldots, d_{C}$ (in sorted order).

In the main memory keep C buffers, one for each possible value $d_{i}, 1 \leq i \leq C$. Each buffer will be of size $B D$. Do one more pass. In this pass, bring $B D$ elements from X (residing in the disks) at a time (in one parallel I/O) and distribute the keys to the buffers (based on the values of the keys). In the disks we grow C runs $R_{1}, R_{2}, \ldots, R_{C}$. When any buffer i is full, write these $B D$ elements at the end of R_{i} and clear this buffer (for any $i, 1 \leq i \leq C$). At the end of this pass, we would have fully grown the runs $R_{1}, R_{2}, \ldots, R_{C}$.

Note that the first pass and the second pass can indeed be merged into one pass.
In the second pass read and write the runs $R_{1}, R_{2}, \ldots, R_{C}$ into one contiguous sequence.
2. The algorithm proceeds in stages. There will be k stages. In the first stage we do one pass through the data and indentify the set Q of the $B D$ smallest elements of X and store these $B D$ elements in a buffer Z. This can be done by bringing $B D$ elements at a time into the core memory and keeping the $B D$ smallest elements seen so far. In another pass of the first stage, we scan through X and delete from X the elements in Q. Let the sequence of the remaining elements of X be X^{\prime}. X^{\prime} will be written to the disks as a contiguous sequence.
for $j=2$ to k do
Let $X=X^{\prime}$; Clear buffer Z;
In one pass through X identify the set Q of the $B D$ smallest elements of X and store these $B D$ elements in Z;
In another pass, scan through X and delete from X the elements in Q;
Let the sequence of the remaining elements of X be X^{\prime};
Write X^{\prime} to the disks as a contiguous sequence.
The i th smallest element of the original input is in the buffer Z. we perform an appropriate selection in Z and output that element.

The number of passes taken by the above algorithm is $2 k$. Thus the total number of parallel I/O operations is $O\left(k \frac{n}{B D}\right)$.
3. Consider the following algorithm:

Find the longest common substring R between S_{1} and S_{2};
If $|R| \geq l$, then output R and stop;
for $i=1$ to n do
Let the $i^{\text {th }}$ character of S_{1} be c;
for every character $d \in \Sigma-\{c\}$ do

Replace the $i^{\text {th }}$ character of S_{1} with d;
Find the longest common substring R between S_{1} and S_{2};
If $|R| \geq l$, output R and stop;
Switch back the $i^{\text {th }}$ character of S_{1} to c;
Output: "There is no such common substring between S_{1} and S_{2};
Note that the longest common substring algorithm is called $O(n)$ times and each call takes $O(n)$ time. Thus the total run time of the algorithm is $O\left(n^{2}\right)$.
4. Here is an algorithm:

Construct a generalized suffix tree Q on $S_{1}, S_{2}, \ldots, S_{k}$;
for $i=1$ to k do
Traverse through Q and label a node u with i
if the subtree rooted at u has a leaf corresponding to a suffix from S_{i};
Traverse through Q and indentify the node u that has been labelled with $1,2, \ldots, k$ and whose string depth is the largest. Output the path label of this node u.

Analysis: Construction of Q takes $O(M)$ time. In the for loop, we traverse through $Q k$ times. Followed by this, we do one more traversal through Q. Each traversal takes $O(M)$ time.

Thus the total run time of the algorithm is $O(k M)$.
5. Let $S A[1: m]$ be the suffix array for T. Initialize $A[1: m]$ to all zeros. This can be done in $O(1)$ time using m processors.
(a) We will assign n processors for each entry in $S A[1: m]$.

for $i=1$ to m in parallel do

The n processors associated with the suffix $S A[i]$ will compare the characters of P with the characters of the suffix $S A[i]$ in parallel and check if there is a match in $O(1)$ time; If there is a match, one of these processors will set $A[i]$ to 1 ;
(b) In problem 5 of Homework 2, you showed that string matching can be done in $O(\log m)$ time. A key step in this algorithm was the fact that using m processors, we can compare P with any suffix $S A[i]$ and decide if there is match at $S A[i], P$ is greater than the suffix $S A[i]$, or P is less than the suffix $S A[i]$ in $O(1)$ time.
Partition $S A[1: m]$ into \sqrt{m} intervals $[1: \sqrt{m}],[\sqrt{m}+1,2 \sqrt{m}],[2 \sqrt{m}+1,3 \sqrt{m}]$, etc. Assign n processors per interval. The n processors associated with any interval will decide (in $O(1)$ time) if P lies in between the two suffixes corresponding to this interval. At the end of the above step, we would have identified an interval within which P will lie. Assign n processors for each suffix in this interval. The n processors associated with
the suffix $S A[i]$ will compare the characters of P with the characters of the suffix $S A[i]$ in parallel and check if there is a match in $O(1)$ time; If there is a match, one of these processors will set $A[i]$ to 1 ;

