
CSE 4502/5717 Big Data Analytics

Fall 2022 Exam 2 Helpsheet

1. We presented a randomized algorithm for solving the selection problem on a single

disk that has an I/O complexity of O
(
n
B

)
, where n is the input size and B is the

block size. We also analyzed the I/O complexity of Depth First Search on a graph

G(V,E). Assuming that M = Θ(|V |), we showed that the I/O complexity for DFS

was O
(

|E|
B

+ |V |
)
.

2. In a Parallel Disks Model (PDM) there are D disks. In one parallel I/O we can

bring a block (of size B) of elements from each of the disks. We typically assume

that M is a constant multiple of DB. We briefly described the DSM and SRM al-

gorithms for sorting on the PDM. We then introduced the (ℓ,m)-merge sort (LMM)

algorithm and showed that it can be used to sort N given elements in no more than[
log(N

M
)

log(min{
√
M,M

B
}) + 1

]2
number of passes through the data.

3. Suffix tree is a powerful data structure that can be used to perform a variety of op-

erations on strings and much more. We showed the following results: 1) Given a text

T and a pattern P we can search for P in T in O(m + n) time where m = |T | and
n = |P |; 2) Given a text T and a set P = {P1, P2, . . . , Pq} of patterns, we can find

all the occurrences of all the patterns in T in O(m + N + K) time where m = |T |,
N is the total size of all the patterns and K is the total number of occurrences of

all the patterns in T ; 3) Given a database DB of texts {T1, T2, . . . , Tk} and a set of

patterns P = {P1, P2, . . . , Pq}, we can find occurrences of all the patterns in DB in

O(M +N +K) time where M is the total size of all the texts in DB, N is the total size

of all the patterns, and K is the total number of occurrences of all the patterns in DB;

4) Given two strings S1 and S2, we can find the longest common substring between

them in O(|S1| + |S2|) time; 5) Given two strings S1 and S2 and an integer l, we can

find all the substrings of S2 of length ≥ l that occur in S1 in O(|S1| + |S2|) time; 6)

Given a string S1, a collection of strings C1, C2, . . . , Cq and an integer l, we can find

all the occurrences of Ci of length ≥ l in S1 (for 1 ≤ i ≤ q) in O(|S1| +
∑q

i=1 |Ci|)
time; and 7) Given n strings of total length M , we can solve the all pairs suffix-prefix

problem in O(M + n2) time.

4. We can use the suffix array and the longest common prefix (LCP) array to search for

a pattern P in a text T in O(n + logm) character comparisons, where m = |T | and
n = |P |. We also pointed out that we can compute the LCP array (for pairs of interest

in string matching) in O(m) time. We also presented a summary of the skew algorithm

for constructing a suffix array that takes O(m) time on any input string of length m.

