1. The loss function is \(L(w_1, w_2) = (w_2 - 3)^2 + (w_1 - 4)^2 + (w_1 + w_2 - 2)^2 + (2w_1 + w_2 - 10)^2 \)
 \[= 6w_1^2 + 3w_2^2 + 6w_1w_2 - 60w_1 - 38w_2 + 161. \]
 We want to have: \(\frac{\partial L}{\partial w_1} = 0 \) and \(\frac{\partial L}{\partial w_2} = 0. \)

 \(\frac{\partial L}{\partial w_1} = 0 \) implies that \(12w_1 + 6w_2 = 60 \) and \(\frac{\partial L}{\partial w_2} = 0 \) implies that \(6w_1 + 6w_2 = 38. \)

 Solving these two equations, we get: \(w_1 = \frac{11}{3} \) and \(w_2 = \frac{8}{3}. \)

2. Here is a multilevel perceptron for realizing the Boolean function
 \(F(x_1, x_2, x_3, x_4) = x_1 \bar{x}_3 x_4 + x_2 \bar{x}_3 + x_1 x_2 \bar{x}_4. \)

3. (a) Let the output vector at layer \(k \) be \(\vec{a}_k \), for \(k = 2, 3, \ldots, L. \) Let the input vector be \(\vec{a}_1. \)

 Also, let the weight matrix and bias vector of layer \(k \) be \(W_k \) and \(\vec{b}_k \), respectively, for \(k = 2, 3, \ldots, L. \)

 Then, we know that \(\vec{a}_k = W_k \vec{a}_{k-1} + \vec{b}_k, \) for \(2 \leq k \leq L. \)

 Note that \(\vec{a}_k = W_k(W_{k-1} \vec{a}_{k-2} + \vec{b}_{k-1}) + \vec{b}_k = W_k W_{k-1} \vec{a}_{k-2} + W_k \vec{b}_{k-1} + \vec{b}_k. \)
Expanding in a similar manner we see that:

$$\mathbf{a}_L = W_L W_{L-1} \cdots W_2 \mathbf{a}_1 + W_L W_{L-1} \cdots W_3 \mathbf{b}_2 + W_L W_{L-1} \cdots W_4 \mathbf{b}_3 + \cdots + W_L W_{L-1} \mathbf{b}_{L-2} + W_L \mathbf{b}_{L-1} + \mathbf{b}_L.$$

We can perform the above computation by first computing the following matrices:

$$W_L, W_L W_{L-1}, W_L W_{L-1} W_{L-2}, \ldots, W_L W_{L-1} W_{L-2} \cdots W_3 W_2.$$

Note that this a prefix computation where the underlying operation is that of multiplying two $n \times n$ matrices. Two $n \times n$ matrices can be multiplied in $O(\log n)$ time using $n^3 \log n$ CREW PRAM processors. As a result, the above prefix computation can be performed in $O(\log L \log n)$ time using $n L \log n$ processors.

Followed by the prefix computations we have perform $(L-1)$ matrix (of size $n \times n$) vector (of size $n \times 1$) multiplications. Each multiplication can be done in $O(\log n)$ time given $n^2 \log n$ CREW PRAM processors. We have enough processors to do all of these products in parallel.

Finally, we have to perform the addition of $L-2$ vectors (of size $n \times 1$ each). This can be done in $O(\log L)$ time using a total of $n L \log n$ processors.

(b) Consider the case when all the bias vectors are zero. In this case, $\mathbf{a}_L = W_L W_{L-1} \cdots W_2 \mathbf{a}_1$.

In other words, $\mathbf{a}_L = W \mathbf{a}_1$ for some matrix W. We can directly learn W with no hidden layers!

4. Let the transactions in the database be t_1, t_2, \ldots, t_q. Note that any item in the database can be represented as an integer in the range $[1, n^c]$.

S is an empty sequence to begin with;

for $i = 1$ to q do

for every item $a \in t_i$ do

Add a to the sequence S;

Sort S using the integer sorting algorithm;

Scan through the sorted sequence to count the support for each item and output those that have enough support.

Clearly, the above algorithm runs in $O(n)$ time.

5. Sort X to get a sorted sequence: r_1, r_2, \ldots, r_n. This will take $O(n \log n)$ time. Let d_i stand for $|r_{i+1} - r_i|$ for $i = 1, 2, \ldots, (n-1)$. Find the $(n-k)^{th}$ smallest number q among $d_1, d_2, \ldots, d_{n-1}$.

This can be done in $O(n)$ time using the BFPRT algorithm. Think of a linear graph $G(V, E)$ in which each r_i is a node (for $1 \leq i \leq n$), and there is an edge between r_{i+1} and r_i (for $1 \leq i \leq (n-1)$). The weight on the edge (r_{i+1}, r_i) is d_i (for $1 \leq i \leq (n-1)$). In this graph keep only edges whose weights are $\leq q$. I.e., we keep $(n-k)$ edges. The connected components of this graph are the clusters that we are looking for. These connected components can be found in one pass through the sorted sequence in $O(n)$ time.

The total run time of the algorithm is $O(n \log n)$.