1. Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be any function on n variables. Given a series of examples to learn f, we can fit them using a linear model: $f(x_1, x_2, \ldots, x_n) = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$. Linear regression computes the optimal values for the parameters by equating the gradient to zero. Let the examples be $(x_1^1, x_2^1, \ldots, x_n^1; y_1)$ for $1 \leq i \leq m$. Let $\mathbf{w} = (w_1 \ w_2 \ \cdots \ w_n)^T$ be the parameter vector. Also, let

$$X = \begin{bmatrix} x_1^1 & x_2^1 & \cdots & x_n^1 \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^m & x_2^m & \cdots & x_n^m \end{bmatrix}.$$

Then, we showed that the optimal value for \mathbf{w} is $(X^T X)^{-1} X^T \mathbf{y}$ where $\mathbf{y} = (y_1 \ y_2 \ \cdots \ y_m)^T$.

2. An artificial neural network (ANN) can be thought of as a directed leveled graph $G(V, E)$ where each node corresponds to a neuron. If there is a directed edge from node i to node j, then, a signal flows from node i to node j.

A simple example is a perceptron that has a single neuron. There are k inputs x_1, x_2, \ldots, x_k to the neuron. Input x_i weighted by w_i, for $1 \leq i \leq k$. If the weighted input to the neuron, i.e., $\sum_{i=1}^{k} w_i x_i$, is $\geq \tau$ (τ being a threshold), then the output of the neuron will be 1; otherwise the output will be 0. We showed that any Boolean function can be represented with a NN consisting of multiple layers of perceptrons.

3. We considered forward and backward propagations in a general feed forward NN $G(V, E)$ and showed that both steps can be completed in $O(|V| + |E|)$ time (for each example). We also briefly discussed convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). In addition, we discussed ways of improving the test accuracy. Specifically, we investigated ensemble learning, drop out method, and regularization.

4. **Association Rules Mining.** An itemset is a set of items. A k-itemset is an itemset of size k. A transaction is an itemset. A rule is represented as $X \rightarrow Y$ where $X \neq \emptyset$, $Y \neq \emptyset$, $X \cap Y = \emptyset$. We are given a database DB of transactions and the number of transactions in the database is n. Let I be the set of distinct items in the database and let $d = |I|$.

For an itemset X, we define $\sigma(X)$ as the number of transactions in which X occurs, i.e. $\sigma(X) = |\{T \in DB | X \subseteq T\}|$.

The support of any rule $X \rightarrow Y$ is $\frac{\sigma(X \cup Y)}{n}$. The confidence of any rule $X \rightarrow Y$ is $\frac{\sigma(X \cup Y)}{\sigma(X)}$.

Association Rules Mining is defined as follows.

Input: A DB of transactions and two numbers: minSupport and minConfidence.

Output: All rules $X \rightarrow Y$ whose support is $\geq \text{minSupport}$ and whose confidence is $\geq \text{minConfidence}$.

An itemset is frequent if $\sigma(X) \geq n \cdot \text{minSupport}$

We discussed the Apriori algorithm for finding all the frequent itemsets. This algorithm is based on the apriori principle: If X is not frequent then no superset of X is frequent. Also, if X is frequent then every subset of X is also frequent.

The pseudocode for the Apriori algorithm is given next.

Algorithm 1: Apriori algorithm

```plaintext
k := 1;
Compute $F_k = \{i \in I | \sigma(i) \geq n \cdot \text{minSupport}\}$;
while $F_k \neq \emptyset$ do

  $k := k + 1$;
  Generate candidates $C_k$ from $F_{k-1}$;
  for $T \in DB$ do
    if $C \subseteq T$ then
      $\sigma(C) := \sigma(C) + 1$;
    $F_k := \emptyset$;
  for $C \in C_k$ do
    if $\sigma(C) \geq n \cdot \text{minSupport}$ then
      $F_k := F_k \cup \{C\}$;

We can use a hash tree to compute the support for each candidate itemset. We also discussed a randomized algorithm for finding frequent itemsets.

5. **Clustering:** We showed how to implement the hierarchical clustering algorithm in $O(n^2)$ time on any input of $n$ points. This algorithm repeatedly merges the two closest clusters until a target number of clusters is reached. To begin with each input point is a cluster on its own.