1. Partition the main memory into two equal parts Q_1 and Q_2 each of size BD. In one parallel I/O bring BD elements into the main memory and store them in Q_1. Do one more parallel I/O and bring the next BD elements to the main memory and store them in Q_2. From out of these $2BD$ elements keep the smallest BD elements in Q_1. Perform one more parallel I/O and bring the next BD elements and store them in Q_2. From out of the elements in Q_1 and Q_2, identify the smallest BD elements and store them in Q_1.

Repeat the above process and in one pass through the entire input identify the smallest BD elements and store them in Q_1. Let the largest element of Q_1 be L.

Do one more pass through the data and similar to the first pass identify the BD smallest element of X that are greater than L. From out of these elements output the largest.

2. Have an output buffer of size $\frac{BD}{C}$ for each value in the range $[1, C]$. Bring BD elements at a time from the disks into the main memory. Distribute these keys to the buffers based on the key values. Repeat this process. When any buffer is full, write these $\frac{BD}{C}$ elements into the disks. One possibility is to write them in $\frac{D}{C}$ disks (a block each). In the disks, we will grow C runs in separate regions. After one read pass through the data, X has been sorted into C runs in the disks. Note that the number of write passes is $O(C)$.

Now we have to write the runs contiguously in the disks. This can be done in one more pass through the data.

3. Construct a suffix tree Q for S in $O(n)$ time. Followed by this, perform an in-order traversal of Q to label every internal node u of Q with an integer $c[u]$ such that $c[u]$ is the number of leaves in the subtree rooted at u.

Now, perform one more traversal through Q to mark every node whose string depth is $\geq k$. In one additional traversal through Q identify the node u that is marked and whose $c[u]$ is the largest. Finally, output any substring of the path label of u whose length is k.

Clearly, the total run time of the algorithm is $O(n)$.

4. We generate all possible k-mers from all of the input strings. The number of such k-mers is $\sum_{i=1}^{n}(|S_i| - k + 1) \leq M$. We sort these k-mers. Since k is a constant, this sorting can be done in $O(M)$ time using the integer sorting algorithm. We can scan through the sorted list of k-mers to output all the unique k-mers and their frequencies. The total run time is $O(M)$.

5. Let T be the text and P be the pattern with $|T| = m$ and $|P| = n$. We can use binary search on the suffix array. In any iteration of binary search, we have to compare the pattern P with a suffix T_i of the text. This comparison involves the identification of the smallest
integer \(q \) such that \(P[q] \neq T_i[q] \). This can be done in \(O(\log n) \) time using \(\frac{n}{\log n} \) CREW PRAM processors as follows.

Consider the comparison of \(P \) with \(T_i = t_i t_{i+1} \ldots t_{i+n-1} \). We want to find the smallest \(q \) such that \(P[q] \neq t_{i+q-1} \). We can generate an array \(E[1:n] \) such that \(E[j] = \infty \) if \(P[j] = t_{i+j-1} \) and \(E[j] = j \) if \(P[j] \neq t_{i+j-1} \). \(q \) is nothing but the minimum of \(E[1], E[2], \ldots, E[n] \) and can be found using a prefix computation in \(O(\log n) \) time using \(\frac{n}{\log n} \) CREW PRAM processors.

There are \(\log m \) iterations of binary search and in each stage we spend \(O(\log n) \) time. Thus the entire binary search takes \(O(\log m \log n) \) time.