
CSE 4502/5717 Big Data Analytics. Fall 2019

Exam II Solutions

1. Partition the main memory into two equal parts Q1 and Q2 each of size BD. In one parallel

I/O bring BD elements into the main memory and store them in Q1. Do one more parallel

I/O and bring the next BD elements to the main memory and store them in Q2. From out

of these 2BD elements keep the smallest BD elements in Q1. Perform one more parallel I/O

and bring the next BD elements and store them in Q2. From out of the elements in Q1 and

Q2, identify the smallest BD elements and store them in Q1.

Repeat the above process and in one pass through the entire input identify the smallest BD

elements and store them in Q1. Let the largest element of Q1 be L.

Do one more pass through the data and similar to the first pass identify the BD smallest

element of X that are greater than L. From out of these elements output the largest.

2. Have an output buffer of size BD
C for each value in the range [1, C]. Bring BD elements at a

time from the disks into the main memory. Distribute these keys to the buffers based on the

key values. Repeat this process. When any buffer is full, write these BD
C elements into the

disks. One possibility is to write them in D
C disks (a block each). In the disks, we will grow

C runs in separate regions. After one read pass through the data, X has been sorted into C

runs in the disks. Note that the number of write passes is O(C).

Now we have to write the runs contiguously in the disks. This can be done in one more pass

through the data.

3. Construct a suffix tree Q for S in O(n) time. Followed by this, perform an in-order traversal

of Q to label every internal node u of Q with an integer c[u] such that c[u] is the number of

leaves in the subtree rooted at u.

Now, perform one more traversal through Q to mark every node whose string depth is ≥ k.

In one additional traversal through Q identify the node u that is marked and whose c[u] is

the largest. Finally, output any substring of the path label of u whose length is k.

Clearly, the total run time of the algorithm is O(n).

4. We generate all possible k-mers from all of the input strings. The number of such k-mers is∑u
i=1(|Si| − k + 1) ≤ M . We sort these k-mers. Since k is a constant, this sorting can be

done in O(M) time using the integer sorting algorithm. We can scan through the sorted list

of k-mers to output all the unique k-mers and their frequencies. The total run time is O(M).

5. Let T be the text and P be the pattern with |T | = m and |P | = n. We can use binary

search on the suffix array. In any iteration of binary search, we have to compare the pattern

P with a suffix Ti of the text. This comparison involves the identification of the smallest

integer q such that P [q] 6= Ti[q]. This can be done in O(log n) time using n
logn CREW PRAM

processors as follows.

Consider the comparison of P with Ti = titi+1 . . . ti+n−1. We want to find the smallest q such

that P [q] 6= ti+q−1. We can generate an array E[1 : n] such that E[j] = ∞ if P [j] = ti+j−1

and E[j] = j if P [j] 6= ti+j−1. q is nothing but the minimum of E[1], E[2], . . . , E[n] and can

be found using a prefix computation in O(log n) time using n
logn CREW PRAM processors.

There are logm iterations of binary search and in each stage we spend O(log n) time. Thus

the entire binary search takes O(logm log n) time.

