1. We apply the LMM algorithm with \(l = m = \sqrt{M} \). We assume known that we can merge \(\sqrt{M} \) sequences of length \(M \) each in 3 passes through the data. The pseudocode of the algorithm is given below:

Algorithm 1: Sort(\(X, N \))

Data:
- \(X \): array of elements;
- \(N = M^2 \): number of elements in \(X \);

Result: sorted array \(X \);

begin

// First Pass;

Split the input into \(M \) runs of length \(M \) each;

Sort each run and unshuffle it into \(m = \sqrt{M} \) sequences of length \(\sqrt{M} \) each;

// Second Pass;

Merge groups of \(l = \sqrt{M} \) unshuffled sequences (in memory);

// Third Pass;

Shuffle groups of \(m = \sqrt{M} \) merged sequences of length \(M \) each;

At the same time clean up the dirty regions;

At this point we have \(\sqrt{M} \) sorted runs of length \(M\sqrt{M} \) each;

// Third Pass (can be done with the previous pass);

Unshuffle each run of length \(M\sqrt{M} \) into \(m = \sqrt{M} \) sequences of length \(M \) each;

// Fourth, Fifth and Sixth Pass;

Merge groups of \(l = \sqrt{M} \) unshuffled sequences of length \(M \) each;

// Seventh Pass;

Shuffle groups of \(m = \sqrt{M} \) merged sequences of length \(M\sqrt{M} \) each;

Clean up dirty regions;

end

For an arbitrary \(N \), the general principle is to first merge \(\sqrt{M} \) sequences of length \(M \) each, then merge \(\sqrt{M} \) sequences of length \(M\sqrt{M} \) each and so on. Let \(K \) stand for \(\sqrt{M} \) and let \(T(u, v) \) be the number of passes required to merge \(u \) sorted sequences of length \(v \) each. Then we have the familiar formulas:
\[T(K, M) = 3 \]
\[T(K, K^i M) = 2 + T(K, K^{i-1} M) = 2i + 3 \]
\[T(K^c, M) = T(K, M) + T(K, KM) + T(K, K^2 M) + \ldots + T(K, K^{c-1}) \]
\[= \sum_{i=0}^{c-1} (2i + 3) = c^2 + 2c \]

However, as we saw in the previous pseudocode, when we compute \(T(K^c, M) \) we can overlap the unshuffling at the beginning of a \(T(K, K^i M) \) computation with the shuffling done at the end of the previous \(T(K, K^{i-1} M) \) computation. Therefore, the last equation becomes:

\[T(K^c, M) = T(K, M) + \ldots + T(K, K^{c-1}) - (c - 1) = c^2 + c + 1 \]

Therefore the number of passes for \(M^2 \) and \(M^3 \) elements are:

\[T(M^2) = T(M, M) = T(K^2, M) = 2^2 + 2 + 1 = 7 \]
\[T(M^3) = T(M^2, M) = T(K^4, M) = 4^2 + 4 + 1 = 21 \]

In general, for a given \(N \), if \(K^c = N/M \) it means that \(c = 2 \log_{M} N/M \) and the number of passes to sort \(N \) elements is:

\[T(N) = T(K^c, M) = 4 \left(\frac{\log N/M}{\log M} \right)^2 + 2 \frac{\log N/M}{\log M} + 1. \]

2. The input striping is good for accessing the rows of the matrix in a disk parallel manner. However, if we want to access the columns, this striping is not good. To multiply \(A \) and \(C \) we need the transpose of \(C \). To get this, we first restripe the matrix \(C \) as follows. Let \(R_i \) be the \(i \)th row of \(C \). We read \(R_i \) into core memory in \(\frac{n}{DB} \) parallel I/Os. We then rewrite row \(R_i \) starting from disk \(i \) mod \(D \) (with one block per disk). This is done for every \(1 \leq i \leq n \). After this restriping, we read one column at a time into the core memory and write it back to the disks one block per disk (starting from the first disk). Note that a column can be read in \(\frac{n}{D} \) parallel I/O operations. Thus the matrix \(C \) can be transposed in \(\frac{n^2}{D} < \frac{n^3}{DB} \) parallel I/O operations.

We then use the following algorithm. Let \(E = AC \).
for $i := 1$ to n do

Read row i of A into core memory. Let this row be called A_i.

for $j := 1$ to n do

Read column j of C into core memory. Let this column be C_j.

$E_{ij} = \sum_{k=1}^{n} A_i[k] \times C_j[k]$.

Write row i of E into the disks, striping the data in a row-major order.

Each row or column of A or C can be read in $O\left(\frac{n}{DB}\right)$ parallel I/Os. Also, each row of E can be written in $O\left(\frac{n}{DB}\right)$ I/Os. Thus the total number of parallel I/Os is $O\left(\frac{n^3}{DB}\right)$.

3. Let the input strings be S_1, S_2, \ldots, S_k with $\sum_{i=1}^{k} |S_i| = M$. Build a generalized suffix tree for these strings in $O(M)$ time. Let the suffixes be labelled with (i, j) where i refers to S_i and j refers to the jth suffix in S_i. Perform a depth first traversal in this tree.

When we reach a leaf labelled $(i, 1)$ for some i, this leaf corresponds to the entire string S_i. This leaf might have more than one labels. Let these labels (in addition to $(i, 1)$) be $(i_1, l_1), (i_2, l_2), \ldots, (i_q, l_q)$. Clearly, all the strings $S_{i_1}, S_{i_2}, \ldots, S_{i_q}$ have S_i as a substring. Output all of these strings as those that contain S_i. Check if the edge to this leaf’s parent is labeled with $. If not, proceed with the traversal. If yes, let x be the parent of this leaf. Also, let c_1, c_2, \ldots, c_r be the other children of x. Traverse through all the subtrees rooted at these children. All the leaves in these subtrees also correspond to strings that have S_i as a substring. Output these strings as well (as those that contain S_i) and proceed with the traversal.

The entire algorithm can be implemented to run in time $O(M + k^2)$.

4. Let S_1, S_2, \ldots, S_k be the given input strings. Let $|S_i| = n_i$, for $1 \leq i \leq k$. For any two strings S_i and S_j we can compute the longest common substring between them in $O(n_i + n_j)$ time, for $1 \leq i, j \leq k$. Use this algorithm to compute the longest common substring between every pair of strings. The total run time is $O\left(\sum_{i=1}^{k} \sum_{j=1}^{k} (n_i + n_j)\right) = O(kM)$.

5. Note that on a common CRCW PRAM we can compute the minimum or maximum of n integers (in the range $[1, n^{O(1)}]$) in $O(1)$ time using n processors.

Let T be the text and P be the pattern with $|T| = m$ and $|P| = n$. We can use binary search on the suffix array. In any iteration of binary search, we have to compare the pattern P with a suffix T_i of the text. This comparison involves the identification of the smallest integer q such that $P[q] \neq T_i[q]$. This can be done in $O(1)$ time using the above algorithm. Thus the entire binary search takes $O(\log m)$ time.