1. Show that we can sort \(M^2 \) keys on the Parallel Disks Model in seven passes through the data (assuming that \(B = \sqrt{M} \)). \textit{Hint:} Use the LMM sort algorithm. How many passes will be needed to sort \(M^3 \) keys if we use the LMM algorithm (for the case of \(B = \sqrt{M} \))?

2. Input are two \(n \times n \) matrices \(A \) and \(C \) residing in \(D \) disks. Present an algorithm for multiplying these matrices using \(O\left(\frac{n^3}{DB}\right) \) parallel I/O operations. To begin with these matrices are striped across the disks in a row-major order. Specifically, let \(R \) be any row of \(A \) or \(C \). The first \(B \) elements of \(R \) are in disk 1, the next \(B \) elements of \(R \) are in disk 2, etc., where \(B \) is the block size. Assume that \(M = \Theta(DB) = \Theta(n) \).

3. (Gusfield) Given a set \(S \) of \(k \) strings, we want to find every string in \(S \) that is a substring of some other string in \(S \). Assuming that the total length of all the strings is \(M \), give an \(O(M + k^2) \)-time algorithm to solve this problem.

4. (Gusfield) Give an algorithm to take in a set of \(k \) strings and to find the longest common substring of each of the \(\binom{k}{2} \) pairs of strings. Assume each string is of length \(n \). Since the longest common substring of any pair can be found in \(O(n) \) time, \(O(k^2 n) \) time clearly suffices. Now suppose that the string lengths are different but sum to \(M \). Show how to find all the longest common substrings in time \(O(kM) \).

5. Let \(T \) be a text of length \(m \). Assume that the suffix array and the LCP array have already been constructed for \(T \). Show how to identify all the occurrences of a pattern \(P \) in \(T \) in \(O(\log m) \) time. You can use up to \(n \) CRCW PRAM processors, where \(n = |P| \).