1. In a Parallel Disks Model (PDM) there are D disks. In one parallel I/O we can bring a block (of size B) of elements from each of the disks. We typically assume that M is a constant multiple of DB. We briefly described the DSM and SRM algorithms for sorting on the PDM. We then introduced the (ℓ, m)-merge sort (LMM) algorithm and showed that it can be used to sort N given elements in no more than $\left\lfloor \frac{\log(\frac{N}{M})}{\log(\min(\sqrt{M}, B))} \right\rfloor + 1$ number of passes through the data.

2. Suffix tree is a powerful data structure that can be used to perform a variety of operations on strings and much more. We showed the following results: 1) Given a text T and a pattern P we can search for P in T in $O(m + n)$ time where $m = |T|$ and $n = |P|$; 2) Given a text T and a set $P = \{P_1, P_2, \ldots, P_q\}$ of patterns, we can find all the occurrences of all the patterns in T in $O(m + N + K)$ time where $m = |T|$, N is the total size of all the patterns and K is the total number of occurrences of all the patterns in T; 3) Given a database DB of texts $\{T_1, T_2, \ldots, T_k\}$ and a set of patterns $P = \{P_1, P_2, \ldots, P_q\}$, we can find occurrences of all the patterns in DB in $O(M + N + K)$ time where M is the total size of all the texts in DB, N is the total size of all the patterns, and K is the total number of occurrences of all the patterns in DB; 4) Given two strings S_1 and S_2, we can find the longest common substring between them in $O(|S_1| + |S_2|)$ time; 5) Given two strings S_1 and S_2 and an integer l, we can find all the substrings of S_2 of length $\geq l$ that occur in S_1 in $O(|S_1| + \sum_{i=1}^{q} |C_i|)$ time; 6) Given a string S_1, a collection of strings C_1, C_2, \ldots, C_q and an integer l, we can find all the occurrences of C_i of length $\geq l$ in S_1 (for $1 \leq i \leq q$) in $O(|S_1| + \sum_{i=1}^{q} |C_i|)$ time; 7) Given a set of strings S_1, S_2, \ldots, S_n we can compute $l[2 : n]$ such that $l(i)$ is the length of the longest common substring that occurs in at least i strings (for $2 \leq i \leq n$) in $O(Mn)$ time where M is the total length of the n strings; and 8) Given n strings of total length M, we can solve the all pairs suffix-prefix problem in $O(M + n^2)$ time.

3. We showed that a suffix array on a given string of length m can be constructed in $O(m)$ time. We can use the suffix array and the longest common prefix (LCP) array to search for a pattern P in a text T in $O(n + \log m)$ character comparisons, where $m = |T|$ and $n = |P|$. We also pointed out that we can compute the LCP array (for pairs of interest in string matching) in $O(m)$ time.