
CSE 4502/5717 Big Data Analytics; Fall 2019

Exam 1 Helpsheet

1. Randomized algorithms. A Monte Carlo algorithm runs for a prespecified amount of time and
its output is correct with high probability. By high probability we mean a probability of ≥ 1 − n−α,
for any constant α. A Las Vegas algorithm always outputs the correct answer and its run time is
a random variable. We say the run time of a Las Vegas algorithm is Õ(f(n)) if the run time is
≤ cαf(n) for all n ≥ n0 with probability ≥ (1 − n−α) for some constants c and n0.

2. Master theorem. Consider the recurrence relation: T (n) = aT (n/b) + f(n), where a ≥ 1 and
b > 1 are constants. Case1: If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).
Case2: If nlogb a = Θ(f(n)), then T (n) = Θ(f(n) log n). Case3: If f(n) = Ω(nlogb a+ε)for some
constant ε > 0 and af(n/b) ≤ cf(n) for some constant c < 1, then, T (n) = Θ(f(n)).

3. PARALLEL ALGORITHMS. The model we used was the PRAM (Parallel Random Access
Machine). Processors communicate by writing into and reading from memory cells that are accessible
to all. Depending on how read and write conflicts are resolved, there are variants of the PRAM. In
an Exclusive Read Exclusive Write (EREW) PRAM, no concuurent reads or concurrent writes are
permitted. In a Concurrent Read Exclusive Write (CREW) PRAM, concurrent reads are permitted
but concurrent writes are prohibited. In a Concurrent Read Concurrent Write (CRCW) PRAM both
concurrent reads and concurrent writes are allowed. Concurrent writes can be resolved in many ways.
In a Common CRCW PRAM, concurrent writes are allowed only if the conflicting processors have
the same message to write (into the same cell at the same time). In an Arbitrary CRCW PRAM,
an arbitrary processor gets to write in cases of conflicts. In a Priority CRCW PRAM, write conflicts
are resolved on the basis of priorities (assigned to the processors at the beginning).

We presented a Common CRCW PRAM algorithm for finding the Boolean AND of n given bits in
O(1) time. We used n processors. As a corollary we gave an algorithm for finding the minimum
(or maximum) of n given arbitrary real numbers in O(1) time using n2 Common CRCW PRAM
processors.

We also discussed an optimal CREW PRAM algorithm for the prefix computation problem. This
algorithm uses n

logn processors and runs in O(log n) time on any input of n elements. (For the prefix
computation problem the input is a sequence of elements from some domain Σ: k1, k2, . . . , kn and the
output is another sequence: k1, k1⊕ k2, . . . , k1⊕ k2⊕ k3⊕ · · · ⊕ kn, where ⊕ is any binary associative
and unit-time computable operation on Σ.)

4. In an out-of-core computing model we typically measure only the number of I/O operations (i.e., the
I/O complexity) performed by any algorithm. Computing time normally is much less than the I/O
time. We let M and B denote the size of the core memory and the block size, respectively. We showed

the following results for a single disk model: 1) We can sort N elements with O
(
N
B

log(N/M)
log(M/B)

)
I/O

operations. We first formed runs of length M each and then merged these N/M runs using a M/B-
way merge algorithm; 2) There exists a deterministic algorithm for selection whose I/O complexity
is O(N/B). BFPRT algorithm was used to achieve this result.


