1. Have an output buffer of size BD for each value in the range $[1, B]$. Bring BD elements at a time from the disks into the main memory. Distribute these keys to the buffers based on the key values. Repeat this process. When any buffer is full, write these BD elements into the disks. In the disks, we will grow B runs in separate regions. After one read pass through the data, X has been sorted into B runs in the disks.

Now we have to write the runs contiguously in the disks. This can be done in one more pass through the data.

2. If s is a repeated substring of X, it must be a prefix for at least two different suffixes. Also, s must be the path label of an internal node. Thus, to find the longest repeated substring of X, we can construct a suffix tree Q for X and look for an internal node u in Q of the largest string depth. We then output the path label of u. The total time is $O(n)$.

3. Let P be the pattern whose length is n. Note that there are only $(\sigma - 1)n$ strings P' of length n such that the Hamming distance between P and P' is 1. Each such P' is called a 1-neighbor of P. For example, let $\Sigma = \{a, b, c\}$ and $P = bcab$, then the only strings P' of length 4 such that the Hamming distance between P and P' is 1 will be acab, ccab, baab, bbab, bcbb, bccbb, bcaa, and bcac.

We first construct a suffix tree Q on T in $O(m)$ time. Followed by this we generate all the 1-neighbors of P. This can be done in $O(\sigma n^2)$ time. For every 1-neighbor P' of P we use Q to identify all the occurrences of P' in T. We can also find all the occurrences of P in T. For each P' we spend $O(n)$ time. For P also we spend $O(n)$ time.

Thus the total run time of the algorithm is $O(m + \sigma n^2)$.

4. Let T be the text and P be the pattern with $|T| = m$ and $|P| = n$. Let $S[1 : m]$ be the suffix array for T. Specifically, $S[i]$ specifies the starting position of the i^{th} smallest suffix of T, for $1 \leq i \leq m$. As was shown in the homework problem (HW2, Problem 5), given two suffixes T_i and T_j (with $T_i < T_j$), we can check if P falls in the interval $[T_i, T_j]$ in $O(1)$ time using n common CRCW PRAM processors.

We partition the interval $[1, m]$ into \sqrt{m} equal subintervals: $[1, \sqrt{m}], [\sqrt{m} + 1, 2\sqrt{m}]$, etc. Assign n processors per subinterval. Let $[i, j]$ be any of these subintervals. The n processors associated with this interval check if P lies in the interval $[T_{S[i]}, T_{S[j]}]$. This is done in parallel for each subinterval. Clearly, this step takes $O(1)$ time. There are two cases to consider:

Case 1: $T_{S[i]} = P$. In this case, there will be some number of consecutive subintervals such that the entire interval corresponds to matches and in the next subinterval $[i, j]$, there is a k such that $P \neq T_{S[k]}$. We have to find the least $k \in [i, j]$ such that $P \neq T_{S[k]}$. This can be done in $O(1)$ time by assigning n processors for each k in this subinterval.
Case 2: $T_3[1] \neq P$. In this case the matches will start in a subinterval, span some number of subintervals and end in a subinterval. In this case we can find the starting index and the ending index for the matches in a similar manner.