CSE 4502/5717 Big Data Analytics. Spring 2019
Exam I Solutions

1. Pick a random element of B and check if this element is in A. Checking can be done using
binary search in O(logn) time. Call these two steps a phase of the algorithm. Repeat this
phase as many times as it takes to indentify a common element.

The probability of success in any phase is > % since we know that there are % common

elements between A and B. Probability of failure in one phase is < %. Therefore, probability
alogn

of failing in k successive phases is < (%)k This probability will be < n=* if k > Tog(4/3)" In

other words, the run time of the algorithm is O(log?n).

2. Assign logn keys per processor. To begin with the processors attempt to write one of their
keys into a memory cell M in parallel. After this write step, every processor reads from M
to see which key has been written into. Let x be this key.

The processors then participate in one more parallel write step where they try write in M a
key they have that is not equal to x. As a result, a second distinct element of X is identified.
In a similar manner, all the distinct elements are identified. If ¢ is the number of distinct
elements, then, all the distinct elements can be identified in O(logn) time.

Let the distinct elements be dy,ds, ..., d..

The processors perform a prefix computation to place all the keys equal to d; in successive
memory cells. (This algorithm was described in class). Followed by this, the processors place
all the keys equal to do in successive memory cells; and so on.

We perform ¢ prefix computations for a total of O(logn) time.

3. In the main memory keep an array C[1 : B]. Also keep buffers Dy, Dy, ..., Dp, where the
size of buffer D; will be B, for 1 <i < B.

In one pass through the data, count the number of keys in X whose value is 7 and store this
count in C[i], for 1 <4 < B.

Perform a prefix sums computation on C[1],C[2],...,C[B] to get q1,q2,...,q5. Let go = 0.

In the second pass, bring one block at a time from the disk. Let the keys in the current
block be s1, s9,...,sp. Distribute these keys to the buffers based on the values of the keys.
Specifically, add s; to Dy, for 1 <7 < B. If any of the buffers is full, write it to the disk in
the appropriate location and clear the buffer. In particular, the first block whose value is ¢
will be written starting from location ¢;_1 + 1, for 1 < i < B. Assume that the first block
of keys whose value is 1 is written starting from location 1. The second block of keys with a
value i will be written statrting from location ¢;_1 + 1 + B, and so on.

When we complete processing the all the input keys in this manner, X would have been
written in the disk in sorted order.

The first pass takes 5 read I/O operations (and no write I/O operations). In the second

pass also we perform only % read I/O operations (and PO {%ﬂ < (% + B) write I/O

operations).

. To solve this problem, we can employ the selection algorithm(s) we have discussed in class.
For instance, we showed that we can perform selection on n elements in O (%) I/0 operations,
B being the block size.

There will be log k phases in the algorithm.

In phase 1, we find the median M of the n elements. We then partition X into X; and Xo
using M as the partition element. So far, we have spent O (%) I/O operations. X has been
divided into two equal sized parts.

In phase 2, we find the medians M; and My of X; and Xs, respectively and partition X3
into two using M; as the partition element. We also partition X5 into two using M as the
partition element. The total number of I/O operations taken will be O (%) X has been
divided into 4 equal sized parts.

We proceed in a similar manner. In phase i we spend O (%) I/O operations, for any i > 1.
At the end of phase i, X will be divided into 2! equal sized parts. This means that we only
need log k phases. Since we spend O (%) I/O operations in each phase, the total number of
I/0O operations needed for the entire algorithm is O (% log k:)

