CSE 4502/5717 Big Data Analytics. Spring 2019
Exam I Solutions

1. Pick a random element of \(B \) and check if this element is in \(A \). Checking can be done using binary search in \(O(\log n) \) time. Call these two steps a phase of the algorithm. Repeat this phase as many times as it takes to identify a common element.

The probability of success in any phase is \(\geq \frac{1}{4} \) since we know that there are \(\frac{n}{4} \) common elements between \(A \) and \(B \). Probability of failure in one phase is \(\leq \frac{3}{4} \). Therefore, probability of failing in \(k \) successive phases is \(\leq \left(\frac{3}{4}\right)^k \). This probability will be \(\leq n^{-\alpha} \) if \(k \geq \frac{\alpha \log n}{\log(4/3)} \). In other words, the run time of the algorithm is \(\tilde{O}(\log^2 n) \).

2. Assign \(\log n \) keys per processor. To begin with the processors attempt to write one of their keys into a memory cell \(M \) in parallel. After this write step, every processor reads from \(M \) to see which key has been written into. Let \(x \) be this key.

The processors then participate in one more parallel write step where they try write in \(M \) a key they have that is not equal to \(x \). As a result, a second distinct element of \(X \) is identified. In a similar manner, all the distinct elements are identified. If \(c \) is the number of distinct elements, then, all the distinct elements can be identified in \(O(\log n) \) time.

Let the distinct elements be \(d_1, d_2, \ldots, d_c \).

The processors perform a prefix computation to place all the keys equal to \(d_1 \) in successive memory cells. (This algorithm was described in class). Followed by this, the processors place all the keys equal to \(d_2 \) in successive memory cells; and so on.

We perform \(c \) prefix computations for a total of \(O(\log n) \) time.

3. In the main memory keep an array \(C[1 : B] \). Also keep buffers \(D_1, D_2, \ldots, D_B \), where the size of buffer \(D_i \) will be \(B \), for \(1 \leq i \leq B \).

In one pass through the data, count the number of keys in \(X \) whose value is \(i \) and store this count in \(C[i] \), for \(1 \leq i \leq B \).

Perform a prefix sums computation on \(C[1], C[2], \ldots, C[B] \) to get \(q_1, q_2, \ldots, q_B \). Let \(q_0 = 0 \).

In the second pass, bring one block at a time from the disk. Let the keys in the current block be \(s_1, s_2, \ldots, s_B \). Distribute these keys to the buffers based on the values of the keys. Specifically, add \(s_i \) to \(D_{q_i} \), for \(1 \leq i \leq B \). If any of the buffers is full, write it to the disk in the appropriate location and clear the buffer. In particular, the first block whose value is \(i \) will be written starting from location \(q_{i-1} + 1 \), for \(1 \leq i \leq B \). Assume that the first block of keys whose value is 1 is written starting from location 1. The second block of keys with a value \(i \) will be written starting from \(q_{i-1} + 1 + B \), and so on.

When we complete processing the all the input keys in this manner, \(X \) would have been written in the disk in sorted order.
The first pass takes \(\frac{n}{B} \) read I/O operations (and no write I/O operations). In the second pass also we perform only \(\frac{n}{B} \) read I/O operations (and \(\sum_{i=1}^{B} \left\lceil \frac{C[i]}{B} \right\rceil \leq \left(\frac{n}{B} + B \right) \) write I/O operations).

4. To solve this problem, we can employ the selection algorithm(s) we have discussed in class. For instance, we showed that we can perform selection on \(n \) elements in \(O\left(\frac{n}{B} \right) \) I/O operations, \(B \) being the block size.

There will be \(\log k \) phases in the algorithm.

In phase 1, we find the median \(M \) of the \(n \) elements. We then partition \(X \) into \(X_1 \) and \(X_2 \) using \(M \) as the partition element. So far, we have spent \(O\left(\frac{n}{B} \right) \) I/O operations. \(X \) has been divided into two equal sized parts.

In phase 2, we find the medians \(M_1 \) and \(M_2 \) of \(X_1 \) and \(X_2 \), respectively and partition \(X_1 \) into two using \(M_1 \) as the partition element. We also partition \(X_2 \) into two using \(M_2 \) as the partition element. The total number of I/O operations taken will be \(O\left(\frac{n}{B} \right) \). \(X \) has been divided into 4 equal sized parts.

We proceed in a similar manner. In phase \(i \) we spend \(O\left(\frac{n}{B} \right) \) I/O operations, for any \(i \geq 1 \). At the end of phase \(i \), \(X \) will be divided into \(2^i \) equal sized parts. This means that we only need \(\log k \) phases. Since we spend \(O\left(\frac{n}{B} \right) \) I/O operations in each phase, the total number of I/O operations needed for the entire algorithm is \(O\left(\frac{n}{B} \log k \right) \).