
CSE 4502/5717 Big Data Analytics. Spring 2019

Exam I Solutions

1. Pick a random element of B and check if this element is in A. Checking can be done using

binary search in O(log n) time. Call these two steps a phase of the algorithm. Repeat this

phase as many times as it takes to indentify a common element.

The probability of success in any phase is ≥ 1
4 since we know that there are n

4 common

elements between A and B. Probability of failure in one phase is ≤ 3
4 . Therefore, probability

of failing in k successive phases is ≤
(
3
4

)k
. This probability will be ≤ n−α if k ≥ α logn

log(4/3) . In

other words, the run time of the algorithm is Õ(log2 n).

2. Assign log n keys per processor. To begin with the processors attempt to write one of their

keys into a memory cell M in parallel. After this write step, every processor reads from M

to see which key has been written into. Let x be this key.

The processors then participate in one more parallel write step where they try write in M a

key they have that is not equal to x. As a result, a second distinct element of X is identified.

In a similar manner, all the distinct elements are identified. If c is the number of distinct

elements, then, all the distinct elements can be identified in O(log n) time.

Let the distinct elements be d1, d2, . . . , dc.

The processors perform a prefix computation to place all the keys equal to d1 in successive

memory cells. (This algorithm was described in class). Followed by this, the processors place

all the keys equal to d2 in successive memory cells; and so on.

We perform c prefix computations for a total of O(log n) time.

3. In the main memory keep an array C[1 : B]. Also keep buffers D1, D2, . . . , DB, where the

size of buffer Di will be B, for 1 ≤ i ≤ B.

In one pass through the data, count the number of keys in X whose value is i and store this

count in C[i], for 1 ≤ i ≤ B.

Perform a prefix sums computation on C[1], C[2], . . . , C[B] to get q1, q2, . . . , qB. Let q0 = 0.

In the second pass, bring one block at a time from the disk. Let the keys in the current

block be s1, s2, . . . , sB. Distribute these keys to the buffers based on the values of the keys.

Specifically, add si to Dsi , for 1 ≤ i ≤ B. If any of the buffers is full, write it to the disk in

the appropriate location and clear the buffer. In particular, the first block whose value is i

will be written starting from location qi−1 + 1, for 1 ≤ i ≤ B. Assume that the first block

of keys whose value is 1 is written starting from location 1. The second block of keys with a

value i will be written statrting from location qi−1 + 1 + B, and so on.

When we complete processing the all the input keys in this manner, X would have been

written in the disk in sorted order.



The first pass takes n
B read I/O operations (and no write I/O operations). In the second

pass also we perform only n
B read I/O operations (and

∑B
i=1

⌈
C[i]
B

⌉
≤
(
n
B + B

)
write I/O

operations).

4. To solve this problem, we can employ the selection algorithm(s) we have discussed in class.

For instance, we showed that we can perform selection on n elements in O
(
n
B

)
I/O operations,

B being the block size.

There will be log k phases in the algorithm.

In phase 1, we find the median M of the n elements. We then partition X into X1 and X2

using M as the partition element. So far, we have spent O
(
n
B

)
I/O operations. X has been

divided into two equal sized parts.

In phase 2, we find the medians M1 and M2 of X1 and X2, respectively and partition X1

into two using M1 as the partition element. We also partition X2 into two using M2 as the

partition element. The total number of I/O operations taken will be O
(
n
B

)
. X has been

divided into 4 equal sized parts.

We proceed in a similar manner. In phase i we spend O
(
n
B

)
I/O operations, for any i ≥ 1.

At the end of phase i, X will be divided into 2i equal sized parts. This means that we only

need log k phases. Since we spend O
(
n
B

)
I/O operations in each phase, the total number of

I/O operations needed for the entire algorithm is O
(
n
B log k

)
.


