
CSE 6512 - Homework 1 Solutions

Marius Nicolae

November 18, 2011

P1

The probability that an element in T is sampled in S1 is p = |S1|
|T | = n22m/3

|T | .

Split T into segments of size d. Let X = B(d, p) be a binomial random
variable counting how many elements in a region of length d from T are present

in S1. The mean of X is µ = dp = dn22m/3

|T | .

The probability that one of the final partitions is greater than d is the same
as the probability that a region of size d contains less than n2 elements from
S1: Prob[part > d] = Prob[X < n2]. In order to apply the Chernoff bounds we
compute the following:

(1− ε)µ = n2 ⇒ 1− ε =
|T |

d2m/3
⇒ ε = 1− |T |

d2m/3
=
d2m/3 − |T |
d2m/3

We apply the Chernoff bound:

Prob[X < n2] < exp
(
−ε2µ/2

)
= exp

(
−
(
d2m/3 − |T |
d2m/3

)2
dn22m/3

|T |
/2

)

= exp

(
− (nd2m/3 − |T |)2n2

2d|T |2m/3

)
The probability that there exists any part of length d with less than n2

elements of S1 is ≤ |T |
d Prob[X < n2]. If q is the maximum size of the final

parts, then:

Prob[q > d] ≤ |T |
d

exp

(
− (nd2m/3 − |T |)2n2

2d|T |2m/3

)
Now, if we use d = (1 + n−1/3)|T |/2m/3 we have:

1

Prob[q > (1 + n−1/3)|T |/2m/3)] ≤ 2m/3

1 + n−1/3
exp

(
−
(
n(1 + n−1/3)|T | − |T |

)2
n2

2(1 + n−1/3)|T |2

)

< 2m/3 exp

(
−
(
n(1 + n−1/3)− 1

)2
n2

2(1 + n−1/3)

)

< 2m/3 exp

(
−n

2(1 + n−1/3)2n2

2(1 + n−1/3)

)
= 2m/3 exp

(
−n

4(1 + n−1/3)

2

)
< 2m/3 exp

(
−n

4(1 + 1)

2

)
= 2m/3 exp

(
−n4

)
< 2m/3−n

4/2

We have used the fact that n−1/3 < 1,∀n > 1 and e < 2.5. As long as
m/3− n4/2 < −n we have the bound required in the problem (that’s the best I
could come up with). A similar result can be obtained for the other inequality,
analogously.

P2

We assign a polynomial to each node in each of the two trees, by the following
rules:

• Every leaf gets polynomial P = x0

• An internal vertex v at height h having children v1, v2, . . . , vk gets poly-
nomial Pv = (xh − Pv1)(xh − Pv2) . . . (x− Pvk)

We claim that the two trees are isomorphic if and only if the polynomials
at their roots are equal. The left to right implication is immediate: if the trees
are isomorphic then the polynomials will be identical by virtue of multiplication
being commutative.

If the polynomials are equal, then we can prove by induction that the trees
are isomorphic. The base case is trivial: if two trees have polynomial x0 then
they are single node trees and are isomorphic. If the polynomial at the root of
both trees is Pv = (xh − Pv1)(xh − Pv2) . . . (x− Pvk), since xh does not appear
in any of Pvi , i = 1, k it must be the case that both trees have k children which
can be paired based on their polynomials. By induction, since the polynomials
of the children are equal, the children’s subtrees are isomorphic and thus the
two trees are isomorphic.

2

So the problem of checking tree isomorphism has been reduced to checking
equality of (at most) degree n multivariate polynomials. This can be done in
Õ(n) as presented in class.

P3

A trivial algorithm is algorithm 1. The worst case runtime is O(mTc) where Tc
is the time needed to check if a graph has a perfect matching,which is the same
as the time needed to multiply two matrices.

Algorithm 1 Algorithm P3

1. pick edge e = (u, v) ∈ E
remove edge e and nodes u and v from the graph
if there exists a perfect matching for the new graph then

recursively compute perfect matching M on the remaining graph
return M ∪ (u, v)

else
restore graph to initial state
remove edge (u, v) but not nodes u and v
go to 1

end if

P4

For each submatrix of size m2, the probability of giving an incorrect answer

is ≤ m2

t/ log t where [1, t] is the range out of which we choose prime p. The

probability of giving an incorrect answer for any of the (n−m+1)2 submatrices

is ≤ (n−m+1)2m2

t/ log t . The max of (n −m + 1)2m2 is obtained for m = n/2 and is

O(n4). So, if we choose t = nα+4.1 then the previous probability is less than
n−α.

The runtime is O(n2) using the following observation. Let B[i, j] be the
fingerprint of the submatrix having the lower right corner at (i, j) and let C[i, j]
be the fingerprint of m contiguous values in row i, ending at position j . Then

B[i, j] = (B[i− 1, j]− 2m
2−mC[i−m+ 1, j])2m + C[i, j](mod p)

For row i, we only need values of B from row i − 1, so the extra memory
for B is linear. The values of C for row i and i − m + 1 at column j can be
computed on the fly as we scan the current row from left to right, so for C we
only add constant memory overhead.

Thus, we can compute the fingerprint of the submatrix ending at (i, j) in
constant time from the fingerprint of the submatrix ending at position (i −

3

1, j). Since testing each fingerprint takes O(1) time, the total runtime is O(n2)
(including the cost of fingerprinting the initial submatrices ending at positions
in row m− 1).

P5

a) For every element x in the skip list,

Prob [level(x) ≥ h] =
∑
i≥h

pi ≤ ph

1− p

⇒ Prob[∃x | level(x) > h] ≤ nph

1− p

We want this ≤ n−α:

nph

1− p
= n−α ⇒ −(α+ 1) logp n = h+ logp (1− p)

⇒ h = (α+ 1) log1/p n+ log1/p (1− p)

⇒ h = Õ(log1/pn).

b) The expected number of children for each node is 1/p which means the
expected runtime of each operation is (1 − n−α)O(1

p log1/p n) + n−αO(n) =

O(1
p log1/p n) = O(log1/p n).

c) In practice, if p is small then the height of the skiplist is small, but the
number of children to be scanned at each level increases. Conversely, if p is
large, the height increases, but the time at each level is reduced. The minimum
value for the function 1/p log1/p n is obtained for p = 1/2 which means our
initial sampling probability was optimal.

P6

Let H be some random hash family, and let h ∈ H. Let S be a sample of M of
size |S| = s = n.

4

Prob[h collides for two values of S] =
1

n

Prob[h is perfect for S] =

(
1− 1

n

)n−1
Prob[∀h ∈ H,h is NOT perfect for S] =

(
1−

(
1− 1

n

)n−1)|H|

Prob[∃S ∈M s.t. there is no perfect h ∈ H for S] ≤ (ms)

(
1−

(
1− 1

n

)n−1)|H|
We want to see for what value of |H| this probability is less than 1:

(ms)

(
1−

(
1− 1

n

)n−1)|H|
< 1

⇒ log (ms) + |H| log

(
1−

(
1− 1

n

)n−1)
< 0

⇒|H| > − log (ms)

log
(

1−
(
1− 1

n

)n−1)
In the last inequality the sign is > because log

(
1− (1− 1

n)n−1
)
< 0.

We know the following facts:

(ms) < 2m ⇒ log (ms) < m

and

(
1− 1

n

)n
≈ 1

e

⇒
(

1− 1

n

)n−1
≈ 1

e(1− 1
n)
≈ 1

e

⇒ log

(
1−

(
1− 1

n

)n−1)
≈ log

(
1− 1

e

)
≈ −0.199

⇒ |H| > mc for some constant c

To sum up, for |H| = O(m), the probability that there is an S for which
none of the functions in H is perfect, is < 1. So, the probability there is no
such S (meaning |H| is perfect for M) is > 0. Using the probabilistic method,
we conclude there exists a perfect hash family, of size polynomial in m.

5

P7

The size of H is p− 1. For fixed x and y, ha(x) = hb(y)⇔ a(x− y) ≡ in mod p
where i ∈ {1, 2, . . . , b pnc}. So ha produces collision on x and y only if a is of the
form a = in(x− y)−1mod p. There are b pnc such values, so δ(x, y,H) = b pnc ≤
p
n = |H|+1

n ≤ 2|H|
n . �

P8

We are interested in the probability of getting farther than d positions to the
right. Then the probability of being at least d positions away from the origin
will be twice that, because the case of going to the left is symmetrical.

Let X = B(n, 1/2) be the event that at any one step we go to the right. If
we go a steps towards the right, and n− a towards the left, and at the end we
are farther than d away from the origin, towards the right, then a > (n+ d)/2.

Prob [X > (n+ d)/2] = Prob

[
X >

n

2

(
1 +

d

n

)]
ε =

d

n
⇒(Chernoff)

Prob [X > (n+ d)/2] < exp

(
−d2

2n

)
We want this ≤ n−α:

exp

(
−d2

2n

)
= n−α ⇒ d2

2n
= α lnn⇒ d2 = 2nα lnn⇒ d =

√
2nα lnn

In conclusion d = Õ
(√
n log n

)
. �

P9

Let G(V,E) be a d-regular graph with m edges and n nodes. Let R = maxi,j Ri,j
where Ri,j is the effective resistance between nodes i and j. We know the
following facts:

• The expected cover time C(G) = O(mR log n)

• ∀i, j ∈ V,Ri,j ≤ length of the shortest path between i and j

• In a d-regular graph, the diameter is ≤ n
d

• In a d-regular graph, m ≤ nd

This meansR is no more than n
d and so C(G) = O(ndnd log n) = O(n2 log n).�

6

