CSE 3500 Algorithms and Complexity

Fall 2016 Exam III – Solutions

- 1. Note :- Here also we can use either **BFS** or **DFS**.
 - (a) The **BFS** solution (Simpler):-

Since all the edge weights are the same, we do a simple BFS at every node, storing the distance from the source (in multiples of w). if one encounters a node again - ignore it (because the distance would be greater than or equal to older distance).

(b) The **DFS** solution

Here, it is possible that we find a better path (shorter path), at a later stage in the traversal. Thus, modify the DFS such that initially all distances are ∞ . Once a node is traversed, its distance from the source is recorded in multiples of w. If the node is re-encountered (it is not avoided - as in the case of BFS algorithm), rather the new value of distance_from_source and the old value are compared and the minimum is retained.

2. Here is an algorithm that checks if X is sorted in nondecreasing order:

Processor 1 writes 1 in *Result*; for i = 1 to (n - 1) in parallel do Processor *i* tries to write a zero in *Result* if $k_i > k_{i+1}$;

The correctness of the algorithm is clear and the algorithm takes O(1) time.

- 3. We can use the prefix computation algorithm to solve this problem. We use one prefix computation for each possible value that the keys can take. Let $n_0 = 0$ and $n_i = |\{q \in X : q = i\}|$, for i = 1, 2, ..., 10. More details of the algorithm follow.
 - 1) for i = 1 to 10 do
 - 2) Initialize A[1:n] to all zeros;
 - 3) Set A[j] = 1 if $k_j = i$, for $1 \le j \le n$;
 - 4) Perform a prefix sums computation on $A[1], A[2], \ldots, A[n]$
 - 5) to get $B[1], B[2], \dots, B[n];$
 - 6) If $k_j = i$ then write k_j in cell $n_{i-1} + B[j]$, for $1 \le j \le n$;
 - $7) n_i = B[n];$

Run time analysis: We first write all the keys that have a value 1 in successive memory cells, starting from cell 1; Followed by this we write all the keys that have a value 2, and so on. The prefix sums computation done in step 4 gives us unique addresses that can be used to write keys with a value *i* in successive memory cells.

The for loop of step 1 is executed 10 times. Step 2 can be done in one unit of time using n processors. Using the slow-down lemma, this can also be done in $O(\log n)$ time using $\frac{n}{\log n}$ processors. Step 3 is similar to Step 2 and hence can be done in $O(\log n)$ time using $\frac{n}{\log n}$ processors. Step 4 takes $O(\log n)$ time using $\frac{n}{\log n}$ processors as was proven in class. Step 6 is similar to Steps 2 and 3 and hence can be completed in $O(\log n)$ time using $\frac{n}{\log n}$ processors. Step 7 takes one unit of time using 1 processor.

Thus the entire algorithm runs in $O(\log n)$ time using $\frac{n}{\log n}$ CREW PRAM processors.

- 4. To solve this problem, we can use the fact that we can find the maximum of n elements in O(1) time using n^2 common CRCW PRAM processors. Here is a recursive algorithm:
 - 0) Partition X into \sqrt{n} groups $X_1, X_2, \ldots, X_{\sqrt{n}}$ such that each group has \sqrt{n} keys;
 - 1) for $1 \le i \le \sqrt{n}$ in parallel do
 - 2) Find the maximum M_i of X_i using \sqrt{n} processors;
 - 3) Find and output the maximum M of $M_1, M_2, \ldots, M_{\sqrt{n}}$ using n processors;

Run time analysis: Let T(n) be the run time of this algorithm on any input of size n using n processors. Step 2 takes $T(\sqrt{n})$ time. Step 3 takes O(1) time (since we only have \sqrt{n} elements and n processors). Thus the recurrence relation for T(n) is:

$$T(n) = T\left(\sqrt{n}\right) + O(1).$$

Using repeated substitutions, we can solve for T(n) to get: $T(n) = O(\log \log n)$.

5. We can solve this problem in polynomial time as follows. Let x_1, x_2, \ldots, x_n be the variables involved in F. Let $F_{x_i=1}$ stand for the Boolean formula (on the variables $x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$) obtained from F by substituting $x_i = 1$. Similarly, let $F_{x_i=0}$ stand for the Boolean formula (on the variables $x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$) obtained from F by substituting $x_i = 0$.

```
if !SATALG(F) then output "F is not satisfiable" and quit;
for i = 1 to n do
if SATALG(F_{x_i=1}) then
Output "x_i = 1"; F = F_{x_i=1};
else
Output "x_i = 0"; F = F_{x_i=0};
```

Run time: Note that SATALG is called (n + 1) times in the above algorithm. If the run time of SATALG is p(n) for some polynomial p(.), then the run time of the above algorithm is (n + 1)p(n) which is also a polynomial in n.