
CSE 3500 Algorithms and Complexity

Fall 2016 Exam III – Solutions

1. Note :- Here also we can use either BFS or DFS.

(a) The BFS solution (Simpler):-

Since all the edge weights are the same, we do a simple BFS at every node,

storing the distance from the source (in multiples of w). if one encounters

a node again - ignore it (because the distance would be greater than or

equal to older distance).

(b) The DFS solution

Here, it is possible that we find a better path (shorter path), at a later

stage in the traversal. Thus, modify the DFS such that initially all dis-

tances are ∞. Once a node is traversed, its distance from the source

is recorded in multiples of w. If the node is re-encountered (it is not

avoided - as in the case of BFS algorithm), rather the new value of dis-

tance from source and the old value are compared and the minimum is

retained.

2. Here is an algorithm that checks if X is sorted in nondecreasing order:

Processor 1 writes 1 in Result;

for i = 1 to (n− 1) in parallel do

Processor i tries to write a zero in Result if ki > ki+1;

The correctness of the algorithm is clear and the algorithm takes O(1) time.

3. We can use the prefix computation algorithm to solve this problem. We use one

prefix computation for each possible value that the keys can take. Let n0 = 0 and

ni = |{q ∈ X : q = i}|, for i = 1, 2, . . . , 10. More details of the algorithm follow.

1) for i = 1 to 10 do

2) Initialize A[1 : n] to all zeros;

3) Set A[j] = 1 if kj = i, for 1 ≤ j ≤ n;

4) Perform a prefix sums computation on A[1], A[2], . . . , A[n]

5) to get B[1], B[2], . . . , B[n];

6) If kj = i then write kj in cell ni−1 + B[j], for 1 ≤ j ≤ n;

7) ni = B[n];

Run time analysis: We first write all the keys that have a value 1 in successive

memory cells, starting from cell 1; Followed by this we write all the keys that have

a value 2, and so on. The prefix sums computation done in step 4 gives us unique

addresses that can be used to write keys with a value i in successive memory cells.



The for loop of step 1 is executed 10 times. Step 2 can be done in one unit of time

using n processors. Using the slow-down lemma, this can also be done in O(log n) time

using n
logn

processors. Step 3 is similar to Step 2 and hence can be done in O(log n)

time using n
logn

processors. Step 4 takes O(log n) time using n
logn

processors as was

proven in class. Step 6 is similar to Steps 2 and 3 and hence can be completed in

O(log n) time using n
logn

processors. Step 7 takes one unit of time using 1 processor.

Thus the entire algorithm runs in O(log n) time using n
logn

CREW PRAM processors.

4. To solve this problem, we can use the fact that we can find the maximum of n elements

in O(1) time using n2 common CRCW PRAM processors. Here is a recursive algorithm:

0) Partition X into
√
n groups X1, X2, . . . , X√n such that

each group has
√
n keys;

1) for 1 ≤ i ≤
√
n in parallel do

2) Find the maximum Mi of Xi using
√
n processors;

3) Find and output the maximum M of M1,M2, . . . ,M√n using n procesors;

Run time analysis: Let T (n) be the run time of this algorithm on any input of size

n using n processors. Step 2 takes T (
√
n) time. Step 3 takes O(1) time (since we only

have
√
n elements and n processors). Thus the recurrence relation for T (n) is:

T (n) = T
(√

n
)

+ O(1).

Using repeated substitutions, we can solve for T (n) to get: T (n) = O(log log n).

5. We can solve this problem in polynomial time as follows. Let x1, x2, . . . , xn be the

variables involved in F . Let Fxi=1 stand for the Boolean formula (on the variables

x1, x2, . . . , xi−1, xi+1, . . . , xn) obtained from F by substituting xi = 1. Similarly, let

Fxi=0 stand for the Boolean formula (on the variables x1, x2, . . . , xi−1, xi+1, . . . , xn)

obtained from F by substituting xi = 0.

if !SATALG(F ) then output “F is not satisfiable” and quit;

for i = 1 to n do

if SATALG(Fxi=1) then

Output “xi = 1”; F = Fxi=1;

else

Output “xi = 0”; F = Fxi=0;

Run time: Note that SATALG is called (n + 1) times in the above algorithm. If the

run time of SATALG is p(n) for some polynomial p(.), then the run time of the above

algorithm is (n + 1)p(n) which is also a polynomial in n.


