
CSE 3500 Algorithms and Complexity. Fall 2016
Exam II Solutions

1. We first merge X1, X2, . . . , Xm as follows. Recursively merge X1, X2, . . . , Xm/2 to get Y1. We
also recursively merge X(m/2)+1, . . . , Xm to get Y2. We then merge Y1 and Y2 to get Y . Note
that Y is a sorted sequence containing all the elements from X1, X2, . . . , Xm. Let T (m) be
the time needed to merge two m/2 sequences. Then T (m) = T (m/2) + n

2 . This solves to:

T (m) = O(n logm) = O
(
n(log n)1/3

)
.

We then sort Xm+1 using the radix sort algorithm to get Z. We know that we can sort N
integers in the range [1, Nf(N)] in O(N f(N)) time. This means that we can sort Xm+1 in

O
(
n(log n)1/3

)
time.

Finally, we can merge Y and Z in O(n) time. The total run time is O
(
n(log n)1/3

)
.

2. (a) Here is an algorithm:

Find(X,R)
1) Find the median M of X;
2) Partition X into X1 and X2 such that X1 = {q ∈ X : q < M}

and X2 = {q ∈ X : q > M};
3) Let

∑
q∈X1

q = S1 and
∑

q∈X2
q = S2;

4) if S1 + M < R then Find(X2, R− S1 −M);
5) if S1 < R and S1 + M ≥ R then output M and quit;
6) if S1 > R then Find(X1, R);

Analysis: Let T (n) be the run time of Find(X,R) where X has n elements. Steps 1, 2,
and 3 take a total of O(n) time. Also note that only one of the three cases in steps
4, 5, and 6 will hapen and these three cases are exhaustive. In the worst case either step
4 happens or step 6 happens. Thus T (n) satisfies: T (n) ≤ T (n/2) + O(n). Using the
Master theorem, we can see that T (n) = O(n).

(b) The problem is much simpler when X is in sorted order. Let X = k1, k2, . . . , kn in
sorted order. Here is an algorithm:

sum = 0.0;
for i = 1 to n do

if sum < R and sum + ki ≥ R then output ki and quit;
sum = sum + ki;

Clearly, the above algorithm takes O(n) time.

3. Kruskal’s algorithm starts with a forest with 7 nodes and no edges.
The edges are sorted in non-decreasing order of the edge weights:
(1, 2), (3, 5), (1, 3), (2, 3), (3, 6), (5, 6), (4, 5), (2, 7), (6, 7), (2, 4), (5, 7). We insert the edge
(1, 2) into the forest; Followed by this we insert the edge (3, 5). The next edge (1, 3)
will cause a cycle if inserted into the forest and hence is thrown out. Proceeding in
this manner, we get the following minimum spanning tree with a total weight of 14:
(1, 2), (1, 3), (2, 7), (3, 5), (3, 6), (4, 5).

4. To begin with we have: S = {s}, dist(1) = 10, dist(2) = 2, dist(3) = ∞, dist(4) = ∞, and
dist(5) = 12.

Phase 1: Node 2 has the minimum dist value and hence it enters S next: S = {s, 2}. dist(1) =
min{dist(1), dist(2) + W (2, 1)} = min{10, 2 + 3} = 5. dist(3) = min{dist(3), dist(2) +
W (2, 3)} = min{∞, 2+2} = 4. dist(4) = min{dist(4), dist(2)+W (2, 4)} = min{∞, 2+∞} =
∞. dist(5) = min{dist(5), dist(2) + W (2, 5)} = min{12, 2 +∞} = 12.

Phase 2: Node 3 has the least dist value and hence it enters S next: S = {s, 2, 3}. dist(1) =
min{dist(1), dist(3) + W (3, 1)} = 5. dist(4) = min{dist(4), dist(3) + W (3, 4)} = min{∞, 4 +
1} = 5. dist(5) = min{dist(5), dist(3) + W (3, 5)} = min{12, 4 + 2} = 6.

Phase 3: Nodes 1 and 4 have the same minimum dist value. We could insert any one of these
into S next. Let S = {s, 2, 3, 4}. dist(1) = min{dist(1), dist(4)+W (4, 1)} = min{5, 5+∞} =
5. dist(5) = min{dist(5), dist(4) + W (4, 5)} = min{6, 5 + 3} = 6.

Phase 4: Node 1 enters S next: S = {s, 1, 2, 3, 4}. dist(5) = min{dist(5), dist(1)+W (1, 5)} =
min{6, 5 +∞} = 6.

Phase 5: Node 5 enters S next.

Thus the shortest path weights to the nodes 1, 2, 3, 4, and 5 are 5, 2, 4, 5, and 6, respectively.

5. The recurrence relation we derived for the 0/1 knapsack problem is: fi(y) =
max{fi−1(y), fi−1(y − wi) + pi}. We are interetsed in computing fn(m). We compute a
(n + 1) × (m + 1) matrix M whose first row and the first column are all zeros. We can
compute M in a row major order as follows:

f1(1) = max{f0(1), f0(1− 2) + 7} = max{0,−∞} = 0.

f1(2) = max{f0(2), f0(2− 2) + 7} = max{0, 7} = 7.

f1(3) = max{f0(3), f0(3− 2) + 7} = max{0, 7} = 7.

· · ·
f2(3) = max{f1(3), f1(3− 3) + 3} = max{7, 3} = 7.

· · ·
f2(5) = max{f1(5), f1(5− 3) + 3} = max{7, 7 + 3} = 10.

· · ·
f3(5) = max{f2(5), f2(5− 4) + 3} = max{10, 0 + 2.5} = 10.

· · ·
f3(8) = max{f2(8), f2(8− 4) + 2.5} = max{10, 9.5} = 10.

The final answer is 10.

6. We utilize the fact that we can compute the edit distance between two strings X and Y in
O(mn) time where |X| = n and |Y | = m. We can compute the edit distance between every
pair of strings and output the pair whose distance is minimum. Let |Si| = `i, for 1 ≤ i ≤ n.

The total time needed is O
(∑n

j=1

∑n
i=1 `i`j

)
= O

(∑n
j=1 `j(`1 + `2 + · · ·+ `n)

)
=

O
(∑n

j=1 `jN
)

= O
(
N
∑n

j=1 `j
)

= O(N2).

