Name:

CSE 3500 Algorithms and Complexity Exam II, November 15, 2016

Note: You are supposed to give proofs to the time bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. (17 points) Input are sequences $X_1, X_2, \ldots, X_m, X_{m+1}$, where $m = 2^{(\log n)^{1/3}}$. For $1 \le i \le m$, each X_i is a sorted sequence of length $\frac{n}{2 \times 2^{(\log n)^{1/3}}}$. X_{m+1} is a sequence of $\frac{n}{2}$ integers in the range $[1, n^{(\log n)^{1/3}}]$ not necessarily in sorted order. The problem is to output a sorted sequence containing all the elements from all of these (m + 1) sequences. Present an $O\left(n(\log n)^{1/3}\right)$ time algorithm for this problem.

- 2. Input are a sequence X of n arbitrary positive real numbers and a positive real number R. The problem is to identify the least key k of X such that: $\sum_{q \in X: q \leq k} q \geq R$. For example, if X = 7, 12, 5, 4, 8, 11, 23, 15, 21, 3 and R = 30 then the answer is k = 11 since $\sum_{q \in X: q \leq 11} q = 38 > R$. 11 is the least such element of X.
 - (a) (12 points) Present an O(n) time algorithm to solve the above problem when X is not in sorted order.
 - (b) (6 points) Present an O(n) time algorithm to solve the above problem when X is in sorted order.

3. (16 points) Find a minimum spanning tree for the following graph G(V, E) using either Prim's algorithm or Kruskal's algorithm: $V = \{1, 2, 3, 4, 5, 6, 7\}$ and the edge weights are: W(1, 2) = 1, W(1, 3) = 2, W(2, 3) = 2, W(2, 4) = 5, W(2, 7) = 4, W(3, 5) = 1, W(3, 6) = 3, W(4, 5) = 3, W(5, 6) = 3, W(5, 7) = 7, and W(6, 7) = 4.

4. (16 points) Use Dijkstra's algorithm to solve the single source shortest paths problem on the following directed graph G(V, E): $V = \{s, 1, 2, 3, 4, 5\}$ and the edge weights are: W(s, 1) = 10, W(s, 2) = 2, W(s, 5) = 12, W(2, 1) = 3, W(2, 3) = 2, W(3, 2) = 15, W(3, 4) = 1, W(3, 5) = 2, W(4, 3) = 5, W(4, 5) = 3, W(5, s) = 4.

5. (16 points) Solve the following 0/1 knapsack problem using the dynamic programming algorithm discussed in class: $n = 3, m = 8, p_1 = 7, w_1 = 2, p_2 = 3, w_2 = 3, p_3 = 2.5$, and $w_3 = 4$.

6. (17 points) Input are strings S_1, S_2, \ldots, S_n from some finite alphabet Σ . The problem is to identify the pair of (distinct) strings for which the edit distance is the minimum (from out of all possible pairs). Present an $O(N^2)$ time algorithm for this problem where $N = \sum_{i=1}^{n} |S_i|$.