CSE 3500 Algorithms and Complexity
 Fall 2016; Exam I; Solutions

1. (a) FALSE. Here is a counterexample: Let $f(n)=3 n$ and $g(n)=2 n, u(n)=n+1$, and $v(n)=n$. Clearly, $f(n)=\Theta(g(n))$ and $u(n)=\Theta(v(n)) . f(n)-g(n)=n$ and $u(n)-v(n)=1$. Clearly, $n \neq \Theta(1)$.
(b) TRUE. Note that $2^{\log n}=n$ and hence the RHS is $\Theta\left(n^{2} \log n\right)$. LHS $=\Theta\left(n^{2} \log n\right)$ and therefore the given statement is true.
2. Consider the following algorithm:

Pick a random sample S of k elements from X; Find and output the maximum element of S. (The value of k will be fixed in the analysis.)

Analysis:

The output of the above algorithm will be incorrect only if all the keys in the random sample come from the smallest 90% of the elements of X. Probability that a randomly picked element comes from the smallest 90% of the elements of X is ≤ 0.9. Thus, the probability that the algorithm outputs an incorrect answer is $\leq(0.9)^{k}$. We want this probability to be $\leq n^{-\alpha}$. This happens when $k \geq \frac{\alpha \log n}{\log (1 / 0.9)}$. This implies that the run time of the algorithm is $O(\log n)$.
3. Here is a linear time algorithm for the given problem:

$$
\begin{aligned}
& \text { Compute sum }=\sum_{j=1}^{l} k_{j} ; \\
& \text { if sum }=s \text { then output } 1 \text { and quit; } \\
& \text { for } i=2 \text { to }(n-l+1) \text { do } \\
& \quad \text { sum }=\operatorname{sum}-k_{i-1}+k_{i+l-1} \\
& \text { if } \text { sum }=s \text { then output } i \text { and quit; }
\end{aligned}
$$

Output no;

For $i=1$ we spend $O(l)$ time and for each value of $i=2,3, \ldots,(n-l+1)$ we spend $O(1)$ time. Thus the total time is $O(n)$.
4. Keep two 2-3 trees N and S. We also keep a variable $M S$ to store the maximum salary value. In N store all the records with the name as the key for each record and in S
store all the records with the social security number as the key for each record. To process Insert(Name, $S S N$, salary), we insert Name into N. In the same node we also store $S S N$. Also, we insert $S S N$ into the tree S. In the same node we store Name. In addition, we set $M S=\max \{M S$, salary $\}$. To process Find_Name $(S S N)$, we search for a record whose key is $S S N$ in the tree S. The name in this node will be output. The run time is $O(\log n)$. We process Find_SSN(Name) in a similar manner. To process MaxSalary() we return the value of $M S$.
5. (a) $T(n)=125 T\left(\frac{n}{5}\right)+n^{2}$. Here $a=125, b=5, n^{\log _{b} a}=n^{3}, f(n)=n^{2}$. Case 1 of the Master theorem applies. Therefore, $T(n)=\Theta\left(n^{3}\right)$.
(b) $T(n)=T\left(\frac{n}{16}\right)+T\left(\frac{n}{25}\right)+T\left(\frac{n}{400}\right)+\sqrt{n}$.

We claim that $T(n)=O(\sqrt{n})$. This can be proven by induction.
Hypothesis: $T(n) \leq c \sqrt{n}$, for some constant c.
Base case: easy.
Induction step: Assume the hypothesis for all the inputs of size up to $n-1$. We'll prove it for inputs of size n.

$$
\begin{gathered}
T(n)=T\left(\frac{n}{16}\right)+T\left(\frac{n}{25}\right)+T\left(\frac{n}{400}\right)+\sqrt{n} \leq c \sqrt{n / 16}+c \sqrt{n / 25}+c \sqrt{n / 400}+\sqrt{n} \\
=\frac{c}{2} \sqrt{n}+\sqrt{n}
\end{gathered}
$$

RHS will be $\leq c \sqrt{n}$ if $c \geq 2$. As a result, it follows that $T(n) \leq 2 \sqrt{n}=O(\sqrt{n})$.
6. We first sort $a_{1}, a_{2}, \ldots, a_{q}$ to order the intervals. This takes $O(q \log q)$ time. Let $Y=\left[a_{1}^{\prime}, b_{1}^{\prime}\right],\left[a_{2}^{\prime}, b_{2}^{\prime}\right], \ldots,\left[a_{q}^{\prime}, b_{q}^{\prime}\right]$ be the ordered sequence of intervals.

$$
\begin{aligned}
& \text { for } i=1 \text { to } q \text { do } \\
& \begin{aligned}
& n_{i}=0 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \text { Perform a binary search for } k_{i} \text { in } Y ; \\
& \text { Let }\left[a_{j}, b_{j}\right] \text { be the interval that } k_{i} \text { belongs to; } \\
& n_{j}=n_{j}+1 ; \\
& \text { for } i=1 \text { to } q \text { do } \\
& \text { Output } n_{i}
\end{aligned}
\end{aligned}
$$

To sort the intervals it takes $O(q \log q)$ time. For each input key we perform a binary search that takes $O(\log q)$ time. Thus the total run time is $O(q \log q+n \log q)=$ $O(n \log q)$.

