
CSE 3500 Algorithms and Complexity

Fall 2016; Exam I; Solutions

1. (a) FALSE. Here is a counterexample: Let f(n) = 3n and g(n) = 2n, u(n) = n + 1,

and v(n) = n. Clearly, f(n) = Θ(g(n)) and u(n) = Θ(v(n)). f(n)−g(n) = n and

u(n)− v(n) = 1. Clearly, n 6= Θ(1).

(b) TRUE. Note that 2logn = n and hence the RHS is Θ(n2 log n). LHS=Θ(n2 log n)

and therefore the given statement is true.

2. Consider the following algorithm:

Pick a random sample S of k elements from X; Find and output the maxi-

mum element of S. (The value of k will be fixed in the analysis.)

Analysis:

The output of the above algorithm will be incorrect only if all the keys in the random

sample come from the smallest 90% of the elements of X. Probability that a randomly

picked element comes from the smallest 90% of the elements of X is ≤ 0.9. Thus, the

probability that the algorithm outputs an incorrect answer is ≤ (0.9)k. We want this

probability to be ≤ n−α. This happens when k ≥ α logn
log(1/0.9)

. This implies that the run

time of the algorithm is O(log n).

3. Here is a linear time algorithm for the given problem:

Compute sum =
∑l

j=1 kj;

if sum = s then output 1 and quit;

for i = 2 to (n− l + 1) do

sum = sum− ki−1 + ki+l−1;

if sum = s then output i and quit;

Output no;

For i = 1 we spend O(l) time and for each value of i = 2, 3, . . . , (n − l + 1) we spend

O(1) time. Thus the total time is O(n).

4. Keep two 2-3 trees N and S. We also keep a variable MS to store the maximum salary

value. In N store all the records with the name as the key for each record and in S

1

store all the records with the social security number as the key for each record. To

process Insert(Name, SSN, salary), we insert Name into N . In the same node we also

store SSN . Also, we insert SSN into the tree S. In the same node we store Name. In

addition, we set MS = max{MS, salary}. To process Find Name(SSN), we search for

a record whose key is SSN in the tree S. The name in this node will be output. The

run time is O(log n). We process Find SSN(Name) in a similar manner. To process

MaxSalary() we return the value of MS.

5. (a) T (n) = 125 T
(
n
5

)
+n2. Here a = 125, b = 5, nlogb a = n3, f(n) = n2. Case 1 of the

Master theorem applies. Therefore, T (n) = Θ(n3).

(b) T (n) = T
(
n
16

)
+ T

(
n
25

)
+ T

(
n
400

)
+
√
n.

We claim that T (n) = O(
√
n). This can be proven by induction.

Hypothesis: T (n) ≤ c
√
n, for some constant c.

Base case: easy.

Induction step: Assume the hypothesis for all the inputs of size up to n − 1.

We’ll prove it for inputs of size n.

T (n) = T
(n

16

)
+T

(n

25

)
+T

(n

400

)
+
√
n ≤ c

√
n/16+c

√
n/25+c

√
n/400+

√
n

=
c

2

√
n +
√
n.

RHS will be ≤ c
√
n if c ≥ 2. As a result, it follows that T (n) ≤ 2

√
n = O(

√
n).

�

6. We first sort a1, a2, . . . , aq to order the intervals. This takes O(q log q) time. Let

Y = [a′1, b
′
1], [a

′
2, b
′
2], . . . , [a

′
q, b
′
q] be the ordered sequence of intervals.

for i = 1 to q do

ni = 0;

for i = 1 to n do

Perform a binary search for ki in Y ;

Let [aj, bj] be the interval that ki belongs to;

nj = nj + 1;

for i = 1 to q do

Output ni;

2

To sort the intervals it takes O(q log q) time. For each input key we perform a binary

search that takes O(log q) time. Thus the total run time is O(q log q + n log q) =

O(n log q). �

3

