CSE 3500 Algorithms and Complexity
Fall 2016; Exam I; Solutions

1. (a) FALSE. Here is a counterexample: Let f(n) = 3n and g(n) = 2n,u(n) =n+ 1,
and v(n) = n. Clearly, f(n) = ©(g(n)) and u(n) = O(v(n)). f(n)—g(n) =n and

u(n) —wv(n) = 1. Clearly, n # O(1).
(b) TRUE. Note that 2'°¢™ = n and hence the RHS is ©(n?logn). LHS=0(n?logn)

and therefore the given statement is true.

2. Consider the following algorithm:

Pick a random sample S of k elements from X; Find and output the maxi-

mum element of S. (The value of k£ will be fixed in the analysis.)

Analysis:

The output of the above algorithm will be incorrect only if all the keys in the random
sample come from the smallest 90% of the elements of X. Probability that a randomly
picked element comes from the smallest 90% of the elements of X is < 0.9. Thus, the
probability that the algorithm outputs an incorrect answer is < (0.9)*. We want this

probability to be < n~®. This happens when k > —2l&n 5 This implies that the run

log(1/0.9
time of the algorithm is O(logn).

3. Here is a linear time algorithm for the given problem:

Compute sum = Zé’:l kj;
if sum = s then output 1 and quit;
fori=2to(n—1+1)do

sum = sum — k;_1 + ki1;_1;

if sum = s then output ¢ and quit;

Output no;

For i = 1 we spend O(l) time and for each value of 1 = 2,3,...,(n — 1+ 1) we spend
O(1) time. Thus the total time is O(n).

4. Keep two 2-3 trees N and S. We also keep a variable M S to store the maximum salary

value. In N store all the records with the name as the key for each record and in S

1



store all the records with the social security number as the key for each record. To
process Insert(Name, SSN, salary), we insert Name into N. In the same node we also
store SSN. Also, we insert SSN into the tree S. In the same node we store Name. In
addition, we set M.S = max{M S, salary}. To process Find_ZName(SSN), we search for
a record whose key is SSN in the tree S. The name in this node will be output. The
run time is O(logn). We process Find_SSN(Name) in a similar manner. To process

MaxSalary() we return the value of MS.

5. (a) T(n) =125T (%) +n? Here a = 125,b = 5,n'%* = n? f(n) =n? Case 1 of the
Master theorem applies. Therefore, T'(n) = O(n?).

() T(n) =T (35) + T (35) + T (55) + V-
We claim that T'(n) = O(y/n). This can be proven by induction.
Hypothesis: T'(n) < ¢y/n, for some constant c.
Base case: easy.
Induction step: Assume the hypothesis for all the inputs of size up to n — 1.

We’ll prove it for inputs of size n.

T(n) =T (1"—6> y (%) 4T (%) +/n < ey/n/16+c\/n/25 +cy/n /400 +/n

zg\/ﬁJr\/ﬁ.

RHS will be < ¢y/n if ¢ > 2. As a result, it follows that 7'(n) < 24/n = O(y/n).
U

6. We first sort as,as,...,a, to order the intervals. This takes O(qlogq) time. Let

Y = [a}, 0], [ay, by], . . ., [ag, b}] be the ordered sequence of intervals.

for i =1to q do
n; = 0;
for i =1ton do
Perform a binary search for k; in Y;
Let [aj, b;] be the interval that k; belongs to;
n; =n; + 1;
fori=1to qdo
Output n;;



To sort the intervals it takes O(qlogq) time. For each input key we perform a binary
search that takes O(loggq) time. Thus the total run time is O(qlogq + nlogq) =
O(nloggq). O



