Name:

CSE 3500 Algorithms and Complexity

Exam I, October 18, 2016

Note: You are supposed to give proofs to the time bounds of your algorithms. Read the questions carefully before attempting to solve them.

1. Prove or disprove:

- (8 points) If $f(n), g(n), u(n)$, and $v(n)$ are non-negative integer functions of n such that $f(n)=\Theta(g(n))$, and $u(n)=\Theta(v(n))$ then, $f(n)-u(n)=\Theta(g(n)-v(n))$.
- (8 points) $7 n^{2} \log n-15 n^{1.5}=\Theta\left(2^{\log n} n \log n\right)$.

2. (17 points) Input is a sequence $X=k_{1}, k_{2}, \ldots, k_{n}$ of arbitrary real numbers. The problem is to identify an element of X that is at least as large as 90% of the elements of X. Present a Monte Carlo algorithm for solving this problem. Your algorithm should run in $O(\log n)$ time. Show that the output of your algorithm will be correct with a high probability.
3. (17 points) Input are a sequence $X=k_{1}, k_{2}, \ldots, k_{n}$ of real numbers (not necessarily in sorted order), an integer l, and a real number s. The problem is to check if there exists an i (where $1 \leq i \leq$ $(n-l+1))$ such that $k_{i}+k_{i+1}+\cdots+k_{i+l-1}=s$. Present an $O(n)$ time algorithm to solve this problem. Note that l could be a function of n. For example, if $X=8.5,5.2,3.4,7.1,11.5,15.1,9.3,2.7$, $l=3$, and $s=22.0$, then there exists such an $i=3$.
4. (16 points) A department has to keep records of its employees such that the following operations can be performed:

Insert(Name, SSN, salary): Insert a record for a person whose name is Name, social security number is $S S N$, and salary is salary.
Find_Name(SSN): Return the name of the person whose social security number is $S S N$; Find_SSN(Name): Return the SSN of the person whose name is Name; and MaxSalary(): Return the maximum salary of anyone whose record is in the data structure. Present a data structure for keeping the records that will take $O(\log n)$ time to perform each of the above operations, n being the number of persons in the department. You can use $O(n)$ space.
5. Solve the following recurrence relations:
(a) (8 points)

$$
T(n)= \begin{cases}1 & n<5 \\ 125 T\left(\frac{n}{5}\right)+n^{2} & n \geq 5\end{cases}
$$

(b) (9 points)

$$
T(n)= \begin{cases}1 & n<4 \\ T\left(\frac{n}{16}\right)+T\left(\frac{n}{25}\right)+T\left(\frac{n}{400}\right)+\sqrt{n} & n \geq 4\end{cases}
$$

6. (17 points) Input is a sequence $X=k_{1}, k_{2}, \ldots, k_{n}$ of real numbers not necessarily in sorted order. It is known that each key of X has a value in one of the following disjoint intervals: $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{q}, b_{q}\right]$. The problem is to compute $n_{1}, n_{2}, \ldots, n_{q}$, where n_{i} is the number of keys of X that have values in the interval $\left[a_{i}, b_{i}\right], 1 \leq i \leq q$. Present an algorithm for solving this problem that takes $O(n \log q)$ time. The intervals are given and they need not be in sorted order. Also, assume that $q \leq n$.
