1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Construct two polynomials $f(x)=$ $\Pi_{i=1}^{n}\left(x-a_{i}\right)$ and $g(x)=\Pi_{i=1}^{n}\left(x-b_{i}\right)$. The problem of checking if A and B are identical can be reduced to the problem of checking if $f(x)$ and $g(x)$ are identical. We can use fingerprinting to do this in $O(n)$ time as follows. Let \mathcal{S} be the set of integers in the range $\left[1, n^{\alpha+1}\right]$. Pick a random integer r from \mathcal{S}, evaluate $f(r)$ and $g(r)$, and check if $f(r)=g(r)$. If $f(r)=g(r)$, then output: " A and B are identical"; else output: " A and B are not identical". Clearly, if $f(r) \neq g(r)$, then A and B are not identical. If A and B are identical, then the above algorithm will never give an incorrect answer. If A and B are not identical, what is the probability that $f(r)=g(r)$? Note that the polynomial $h(x)=f(x)-g(x)$ has at most n distinct zeros. Therefore, Prob. $[f(r)=g(r)] \leq \frac{n}{n^{\alpha+1}}=n^{-\alpha}$.

Note: If $f(r)$ and $g(r)$ are very large numbers, we can use a random prime p and check if $f(r) \bmod p=g(r) \bmod p$ instead of checking if $f(r)=g(r)$. If p is chosen from a large enough range, the overall probability of an incorrect answer can be ensured to be $\leq n^{-\alpha}$.
2. Note that the diameter of G is $2 \sqrt{n}-1$. As a result, the resistance of $G, R(G)$ is $\leq 2 \sqrt{n}-1$. The number of edges in G is $O(n \sqrt{n})$. Therefore, $C(G)=O(|E| R(G) \log n)=O\left(n^{2} \log n\right)$.
3. Consider a random assignment to the n variables, where each variable is assigned the value T with probability $1 / 2$ and it is assigned the value F with the same probability. Consider any clause C_{i} and let the number of variables in this clause be $k \geq 1$. Probability that C_{i} is not satisfied is $\leq 2^{-k}$. Thus, probability that C_{i} is satisfied is $\geq 1 / 2$. As a result, the expected value of the total weight of all the satisfied clauses is $\sum_{i=1}^{m} w_{i} \times$ Prob.[C_{i} is satisfied] $\geq \frac{\sum_{i=1}^{m} w_{i}}{2}$. This implies that there exists an assignment under which the sum of weights of all the satisfied clauses is $\geq \frac{\sum_{i=1}^{m} w_{i}}{2}$.
4. Let $X=k_{1}, k_{2}, \ldots, k_{n}$. Assume without loss of generality that the keys are distinct. Note that the right neighbor of any input key k_{i} is nothing but the minimum among all the input keys that are greater than k_{i}. Key k_{i} is assigned a group G_{i} of n processors, $1 \leq i \leq n$. The processors associated with k_{i} use an array $A_{i}[1: n]$. This array is initialized with all ∞ 's. Processor j of group G_{i} writes k_{j} in $A_{i}[j]$ if $k_{j}>k_{i}$. After this write step that takes one parallel step, processors in G_{i} find the minimum of $A_{i}[1], A_{i}[2], \ldots, A_{i}[n]$ in $\widetilde{O}(1)$ time. This minimum is the right neighbor of k_{i}.
5. We will show that we can stably sort n integers in the range $[1, \sqrt{n}]$ in $O(\sqrt{n})$ time using \sqrt{n} CREW PRAM processors. Using the idea of radix sorting it will follow that we can sort n integers in the range $\left[1, n^{c}\right]$ (for any constant c) in $O(\sqrt{n})$ time using \sqrt{n} processors.
Let $X=k_{1}, k_{1}, \ldots, k_{n}$ be the input sequence. Assign \sqrt{n} keys per processor. In particular, the first processor gets the keys $k_{1}, k_{2}, \ldots, k_{\sqrt{n}}$; the second processor gets the keys $k_{\sqrt{n}+1}, k_{\sqrt{n}+2}, \ldots, k_{2 \sqrt{n}}$; and so on.
(a) Each processor sorts its keys using bucket sorting. This takes $O(\sqrt{n})$ time. Let $N_{i, j}$ be the number of keys of value j that processor i has, for $1 \leq i, j \leq \sqrt{n}$.
(b) All the \sqrt{n} processors perform a prefix sums computation on $N_{1,1}, N_{2,1}, \ldots, N_{\sqrt{n}, 1}$, $N_{1,2}, N_{2,2}, \ldots, N_{\sqrt{n}, 2}, \cdots, N_{1, \sqrt{n}}, N_{2, \sqrt{n}}, \ldots, N_{\sqrt{n}, \sqrt{n}}$.
(c) Each processor now uses these prefix sums values to output its keys in the sorted order.

Since each of the above three steps takes $O(\sqrt{n})$ time, the run time of the algorithm is $O(\sqrt{n})$.
6. Assume that A and B are in common memory in successive cells. In particular, assume that A is in $M[1: n]$ and B is in $M[n+1: m+n]$.
(a) Sort B, i.e., sort $M[n+1: n+m]$. This can be done in $\widetilde{O}(\log m)$ time using m arbitrary CRCW PRAM processors.
(b) Assign one processor per element of A. Processor i performs a binary search in $B[n+1$: $n+m]$ to check if $M[i]$ is in B, for $1 \leq i \leq n$. This binary search takes $O(\log m)$ time.
(c) In this step, we'll use an array $Q[1: 2 m]$. Each element of A that is also in B will be placed in a unique cell of Q. Each element of A is assigned one processor. If an element of A is in $A \cap B$, the corresponding processor will try to place the element in Q. If an element of A is not in $A \cap B$, the corresponding processor goes to sleep. If a processor π has an element that has to be placed in Q, π proceeds in rounds. It takes as many rounds as needed to successfully place its key.
In a round, π picks a random cell in Q; If this cell is occupied, it waits for the next round; If this cell is empty, it tries to write its key in the cell; Processor π reads from this cell to check if its key is there; If so, the processor goes to sleep; If not, it moves to the next round.
Probability that π succeeds in any round is $\geq 1 / 2$. Thus the number of rounds needed to place π^{\prime} key successfully in Q is $\widetilde{O}(\log m)$, for any processor π.
(d) Use a prefix computation to compress the array $Q[1: 2 m]$ (and get rid of the empty cells). This can be done in $O(\log m)$ time using $\frac{2 m}{\log m} \leq n$ processors.
The compressed array Q is $A \cap B$.
We could do steps (c) and (d) in a different way as follows. We use an array $Q[1: m]$ initialized to all zeros. Each element of A is assigned a processor. Processor i goes to sleep if k_{i} is not in $A \cap B, 1 \leq i \leq n$. Otherwise, processor i writes a 1 in $Q[j]$ if $M[i]=M[n+j]$. After this parallel write step, we assign one processor per element of B. These processors empty the cells of B that are not in $A \cap B$. A prefix sums computation is done on Q in $O(\log m)$ time using $\frac{m}{\log m}$ processors. These prefix sums are used to write the elements of $A \cap B$ in successive cells in common memory.

