CSE 6512 Randomization in Computing. Fall 2011 Exam #1 Solutions

1. Let $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, b_n\}$. Construct two polynomials $f(x) = \prod_{i=1}^n (x - a_i)$ and $g(x) = \prod_{i=1}^n (x - b_i)$. The problem of checking if A and B are identical can be reduced to the problem of checking if f(x) and g(x) are identical. We can use fingerprinting to do this in O(n) time as follows. Let S be the set of integers in the range $[1, n^{\alpha+1}]$. Pick a random integer r from S, evaluate f(r) and g(r), and check if f(r) = g(r). If f(r) = g(r), then output: "A and B are identical"; else output: "A and B are not identical". Clearly, if $f(r) \neq g(r)$, then A and B are not identical. If A and B are identical, then the above algorithm will never give an incorrect answer. If A and B are not identical, what is the probability that f(r) = g(r)? Note that the polynomial h(x) = f(x) - g(x) has at most n distinct zeros. Therefore, $Prob.[f(r) = g(r)] \leq \frac{n}{n^{\alpha+1}} = n^{-\alpha}$.

Note: If f(r) and g(r) are very large numbers, we can use a random prime p and check if $f(r) \mod p = g(r) \mod p$ instead of checking if f(r) = g(r). If p is chosen from a large enough range, the overall probability of an incorrect answer can be ensured to be $\leq n^{-\alpha}$.

- 2. Note that the diameter of G is $2\sqrt{n} 1$. As a result, the resistance of G, R(G) is $\leq 2\sqrt{n} 1$. The number of edges in G is $O(n\sqrt{n})$. Therefore, $C(G) = O(|E| R(G) \log n) = O(n^2 \log n)$.
- 3. Consider a random assignment to the *n* variables, where each variable is assigned the value T with probability 1/2 and it is assigned the value F with the same probability. Consider any clause C_i and let the number of variables in this clause be $k \ge 1$. Probability that C_i is not satisfied is $\le 2^{-k}$. Thus, probability that C_i is satisfied is $\ge 1/2$. As a result, the expected value of the total weight of all the satisfied clauses is $\sum_{i=1}^{m} w_i \times \text{Prob.}[C_i \text{ is satisfied}] \ge \frac{\sum_{i=1}^{m} w_i}{2}$. This implies that there exists an assignment under which the sum of weights of all the satisfied clauses is $\ge \frac{\sum_{i=1}^{m} w_i}{2}$.
- 4. Let $X = k_1, k_2, \ldots, k_n$. Assume without loss of generality that the keys are distinct. Note that the right neighbor of any input key k_i is nothing but the minimum among all the input keys that are greater than k_i . Key k_i is assigned a group G_i of n processors, $1 \le i \le n$. The processors associated with k_i use an array $A_i[1:n]$. This array is initialized with all ∞ 's. Processor j of group G_i writes k_j in $A_i[j]$ if $k_j > k_i$. After this write step that takes one parallel step, processors in G_i find the minimum of $A_i[1], A_i[2], \ldots, A_i[n]$ in $\tilde{O}(1)$ time. This minimum is the right neighbor of k_i .
- 5. We will show that we can stably sort n integers in the range $[1, \sqrt{n}]$ in $O(\sqrt{n})$ time using \sqrt{n} CREW PRAM processors. Using the idea of radix sorting it will follow that we can sort n integers in the range $[1, n^c]$ (for any constant c) in $O(\sqrt{n})$ time using \sqrt{n} processors. Let $X = k_1, k_1, \ldots, k_n$ be the input sequence. Assign \sqrt{n} keys per processor. In particular, the first processor gets the keys $k_1, k_2, \ldots, k_{\sqrt{n}}$; the second processor gets the keys $k_{\sqrt{n+1}}, k_{\sqrt{n+2}}, \ldots, k_{2\sqrt{n}}$; and so on.

- (a) Each processor sorts its keys using bucket sorting. This takes $O(\sqrt{n})$ time. Let $N_{i,j}$ be the number of keys of value j that processor i has, for $1 \le i, j \le \sqrt{n}$.
- (b) All the \sqrt{n} processors perform a prefix sums computation on $N_{1,1}, N_{2,1}, \ldots, N_{\sqrt{n},1}, N_{1,2}, N_{2,2}, \ldots, N_{\sqrt{n},2}, \cdots, N_{1,\sqrt{n}}, N_{2,\sqrt{n}}, \ldots, N_{\sqrt{n},\sqrt{n}}.$
- (c) Each processor now uses these prefix sums values to output its keys in the sorted order.

Since each of the above three steps takes $O(\sqrt{n})$ time, the run time of the algorithm is $O(\sqrt{n})$.

- 6. Assume that A and B are in common memory in successive cells. In particular, assume that A is in M[1:n] and B is in M[n+1:m+n].
 - (a) Sort B, i.e., sort M[n+1:n+m]. This can be done in $\tilde{O}(\log m)$ time using m arbitrary CRCW PRAM processors.
 - (b) Assign one processor per element of A. Processor *i* performs a binary search in B[n+1: n+m] to check if M[i] is in B, for $1 \le i \le n$. This binary search takes $O(\log m)$ time.
 - (c) In this step, we'll use an array Q[1:2m]. Each element of A that is also in B will be placed in a unique cell of Q. Each element of A is assigned one processor. If an element of A is in $A \cap B$, the corresponding processor will try to place the element in Q. If an element of A is not in $A \cap B$, the corresponding processor goes to sleep. If a processor π has an element that has to be placed in Q, π proceeds in rounds. It takes as many rounds as needed to successfully place its key.

In a round, π picks a random cell in Q; If this cell is occupied, it waits for the next round; If this cell is empty, it tries to write its key in the cell; Processor π reads from this cell to check if its key is there; If so, the processor goes to sleep; If not, it moves to the next round.

Probability that π succeeds in any round is $\geq 1/2$. Thus the number of rounds needed to place π 'key successfully in Q is $\tilde{O}(\log m)$, for any processor π .

(d) Use a prefix computation to compress the array Q[1:2m] (and get rid of the empty cells). This can be done in $O(\log m)$ time using $\frac{2m}{\log m} \leq n$ processors.

The compressed array Q is $A \cap B$.

We could do steps (c) and (d) in a different way as follows. We use an array Q[1:m] initialized to all zeros. Each element of A is assigned a processor. Processor i goes to sleep if k_i is not in $A \cap B$, $1 \leq i \leq n$. Otherwise, processor i writes a 1 in Q[j] if M[i] = M[n+j]. After this parallel write step, we assign one processor per element of B. These processors empty the cells of B that are not in $A \cap B$. A prefix sums computation is done on Q in $O(\log m)$ time using $\frac{m}{\log m}$ processors. These prefix sums are used to write the elements of $A \cap B$ in successive cells in common memory.