
CSE 6512 Randomization in Computing. Fall 2011

Exam #1 Solutions

1. Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}. Construct two polynomials f(x) =

Πn
i=1(x − ai) and g(x) = Πn

i=1(x − bi). The problem of checking if A and B are identi-

cal can be reduced to the problem of checking if f(x) and g(x) are identical. We can use

fingerprinting to do this in O(n) time as follows. Let S be the set of integers in the range

[1, nα+1]. Pick a random integer r from S, evaluate f(r) and g(r), and check if f(r) = g(r). If

f(r) = g(r), then output: “A and B are identical”; else output: “A and B are not identical”.

Clearly, if f(r) 6= g(r), then A and B are not identical. If A and B are identical, then the

above algorithm will never give an incorrect answer. If A and B are not identical, what is

the probability that f(r) = g(r)? Note that the polynomial h(x) = f(x)− g(x) has at most

n distinct zeros. Therefore, Prob.[f(r) = g(r)] ≤ n
nα+1 = n−α.

Note: If f(r) and g(r) are very large numbers, we can use a random prime p and check if

f(r) mod p = g(r) mod p instead of checking if f(r) = g(r). If p is chosen from a large enough

range, the overall probability of an incorrect answer can be ensured to be ≤ n−α.

2. Note that the diameter of G is 2
√
n− 1. As a result, the resistance of G, R(G) is ≤ 2

√
n− 1.

The number of edges in G is O(n
√
n). Therefore, C(G) = O(|E| R(G) log n) = O(n2 log n).

3. Consider a random assignment to the n variables, where each variable is assigned the value

T with probability 1/2 and it is assigned the value F with the same probability. Consider

any clause Ci and let the number of variables in this clause be k ≥ 1. Probability that Ci
is not satisfied is ≤ 2−k. Thus, probability that Ci is satisfied is ≥ 1/2. As a result, the

expected value of the total weight of all the satisfied clauses is
∑m
i=1wi× Prob.[Ci is satisfied]

≥
∑m

i=1
wi

2 . This implies that there exists an assignment under which the sum of weights of

all the satisfied clauses is ≥
∑m

i=1
wi

2 .

4. Let X = k1, k2, . . . , kn. Assume without loss of generality that the keys are distinct. Note

that the right neighbor of any input key ki is nothing but the minimum among all the input

keys that are greater than ki. Key ki is assigned a group Gi of n processors, 1 ≤ i ≤ n. The

processors associated with ki use an array Ai[1 : n]. This array is initialized with all ∞’s.

Processor j of group Gi writes kj in Ai[j] if kj > ki. After this write step that takes one

parallel step, processors in Gi find the minimum of Ai[1], Ai[2], . . . , Ai[n] in Õ(1) time. This

minimum is the right neighbor of ki.

5. We will show that we can stably sort n integers in the range [1,
√
n] in O(

√
n) time using

√
n

CREW PRAM processors. Using the idea of radix sorting it will follow that we can sort n

integers in the range [1, nc] (for any constant c) in O(
√
n) time using

√
n processors.

Let X = k1, k1, . . . , kn be the input sequence. Assign
√
n keys per processor. In partic-

ular, the first processor gets the keys k1, k2, . . . , k√n; the second processor gets the keys

k√n+1, k
√
n+2, . . . , k2

√
n; and so on.

(a) Each processor sorts its keys using bucket sorting. This takes O(
√
n) time. Let Ni,j be

the number of keys of value j that processor i has, for 1 ≤ i, j ≤
√
n.

(b) All the
√
n processors perform a prefix sums computation on N1,1, N2,1, . . . , N√n,1,

N1,2, N2,2, . . . , N√n,2, · · ·, N1,
√
n, N2,

√
n, . . . , N

√
n,
√
n.

(c) Each processor now uses these prefix sums values to output its keys in the sorted order.

Since each of the above three steps takes O(
√
n) time, the run time of the algorithm is O(

√
n).

6. Assume that A and B are in common memory in successive cells. In particular, assume that

A is in M [1 : n] and B is in M [n+ 1 : m+ n].

(a) Sort B, i.e., sort M [n+ 1 : n+m]. This can be done in Õ(logm) time using m arbitrary

CRCW PRAM processors.

(b) Assign one processor per element of A. Processor i performs a binary search in B[n+1 :

n+m] to check if M [i] is in B, for 1 ≤ i ≤ n. This binary search takes O(logm) time.

(c) In this step, we’ll use an array Q[1 : 2m]. Each element of A that is also in B will be

placed in a unique cell of Q. Each element of A is assigned one processor. If an element

of A is in A ∩ B, the corresponding processor will try to place the element in Q. If an

element of A is not in A ∩ B, the corresponding processor goes to sleep. If a processor

π has an element that has to be placed in Q, π proceeds in rounds. It takes as many

rounds as needed to successfully place its key.

In a round, π picks a random cell in Q; If this cell is occupied, it waits for the next

round; If this cell is empty, it tries to write its key in the cell; Processor π reads from

this cell to check if its key is there; If so, the processor goes to sleep; If not, it moves to

the next round.

Probability that π succeeds in any round is ≥ 1/2. Thus the number of rounds needed

to place π’key successfully in Q is Õ(logm), for any processor π.

(d) Use a prefix computation to compress the array Q[1 : 2m] (and get rid of the empty

cells). This can be done in O(logm) time using 2m
logm ≤ n processors.

The compressed array Q is A ∩B.

We could do steps (c) and (d) in a different way as follows. We use an array Q[1 : m] initialized

to all zeros. Each element of A is assigned a processor. Processor i goes to sleep if ki is not

in A ∩ B, 1 ≤ i ≤ n. Otherwise, processor i writes a 1 in Q[j] if M [i] = M [n + j]. After

this parallel write step, we assign one processor per element of B. These processors empty

the cells of B that are not in A ∩ B. A prefix sums computation is done on Q in O(logm)

time using m
logm processors. These prefix sums are used to write the elements of A ∩ B in

successive cells in common memory.

