CSE 6512 Randomization in Computing. Fall 2011
Exam #1 Solutions

. Let A = {ay,a2,...,a,} and B = {by,by,...,b,}. Construct two polynomials f(z) =
I (z — a;) and g(z) = I ;(x — b;). The problem of checking if A and B are identi-
cal can be reduced to the problem of checking if f(z) and g(z) are identical. We can use
fingerprinting to do this in O(n) time as follows. Let S be the set of integers in the range
[1,n%"1]. Pick a random integer r from S, evaluate f(r) and g(r), and check if f(r) = g(r). If
f(r) = g(r), then output: “A and B are identical”; else output: “A and B are not identical”.

Clearly, if f(r) # g(r), then A and B are not identical. If A and B are identical, then the
above algorithm will never give an incorrect answer. If A and B are not identical, what is
the probability that f(r) = g(r)? Note that the polynomial h(x) = f(z) — g(z) has at most
n distinct zeros. Therefore, Prob.[f(r) = g(r)] < 34 =n~7.

Note: If f(r) and g(r) are very large numbers, we can use a random prime p and check if
f(r) mod p = g(r) mod p instead of checking if f(r) = g(r). If p is chosen from a large enough

range, the overall probability of an incorrect answer can be ensured to be < n™%.

. Note that the diameter of G is 2y/n — 1. As a result, the resistance of G, R(G) is < 2y/n — 1.
The number of edges in G is O(ny/n). Therefore, C(G) = O(|E| R(G)logn) = O(n?logn).

. Consider a random assignment to the n variables, where each variable is assigned the value
T with probability 1/2 and it is assigned the value F with the same probability. Consider
any clause C; and let the number of variables in this clause be k£ > 1. Probability that C;
is not satisfied is < 27%. Thus, probability that C; is satisfied is > 1/2. As a result, the
expecﬂ%ed value of the total weight of all the satisfied clauses is >_/*; w; x Prob.[C; is satisfied]

> %wz This implies that there exists an assignment under which the sum of weights of
all the satisfied clauses is > #

. Let X = kq1,ko,...,k,. Assume without loss of generality that the keys are distinct. Note
that the right neighbor of any input key k; is nothing but the minimum among all the input
keys that are greater than k;. Key k; is assigned a group G; of n processors, 1 < i < n. The
processors associated with k; use an array A;[1 : n]. This array is initialized with all co’s.
Processor j of group G; writes k; in A;[j] if k; > k;. After this write step that takes one
parallel step, processors in G; find the minimum of A;[1], 4;[2], ..., 4;[n] in O(1) time. This
minimum is the right neighbor of k;.

. We will show that we can stably sort n integers in the range [1,/n]| in O(y/n) time using 1/n
CREW PRAM processors. Using the idea of radix sorting it will follow that we can sort n
integers in the range [1,n¢ (for any constant ¢) in O(y/n) time using \/n processors.

Let X = ky,k1,...,k, be the input sequence. Assign /n keys per processor. In partic-
ular, the first processor gets the keys ki, kg,...,k 5; the second processor gets the keys
k a1k mgas - - ko ms and so on.



(a) Each processor sorts its keys using bucket sorting. This takes O(y/n) time. Let N;; be
the number of keys of value j that processor i has, for 1 <i,j < /n.

(b) All the /n processors perform a prefix sums computation on Nia, Nojgs ooy N,
Nig,Nogy ooy Nomay o Ny yms Na s s N i

(¢) Each processor now uses these prefix sums values to output its keys in the sorted order.
Since each of the above three steps takes O(y/n) time, the run time of the algorithm is O(y/n).

6. Assume that A and B are in common memory in successive cells. In particular, assume that
Aisin M[1:n]and Bisin M[n+1:m+ n|.

(a) Sort B, i.e., sort M[n+1: n+m]. This can be done in O(logm) time using m arbitrary
CRCW PRAM processors.

(b) Assign one processor per element of A. Processor i performs a binary search in B[n+1 :
n + m] to check if M[i] is in B, for 1 <14 < n. This binary search takes O(logm) time.

(c) In this step, we’ll use an array Q[1 : 2m]. Each element of A that is also in B will be
placed in a unique cell of (). Each element of A is assigned one processor. If an element
of A isin AN B, the corresponding processor will try to place the element in Q. If an
element of A is not in AN B, the corresponding processor goes to sleep. If a processor
7 has an element that has to be placed in @), m proceeds in rounds. It takes as many
rounds as needed to successfully place its key.

In a round, 7 picks a random cell in @); If this cell is occupied, it waits for the next
round; If this cell is empty, it tries to write its key in the cell; Processor 7w reads from
this cell to check if its key is there; If so, the processor goes to sleep; If not, it moves to
the next round.

Probability that m succeeds in any round is > 1/2. Thus the number of rounds needed
to place m’key successfully in @ is 6(log m), for any processor .

(d) Use a prefix computation to compress the array Q[1 : 2m] (and get rid of the empty

2m
logm

cells). This can be done in O(logm) time using < m processors.

The compressed array @) is AN B.

We could do steps (c) and (d) in a different way as follows. We use an array Q[1 : m] initialized
to all zeros. Each element of A is assigned a processor. Processor i goes to sleep if k; is not
in AN B, 1 < i < n. Otherwise, processor i writes a 1 in Q[j] if M[i] = M[n + j]. After
this parallel write step, we assign one processor per element of B. These processors empty
the cells of B that are not in A N B. A prefix sums computation is done on @ in O(logm)

m
logm
successive cells in common memory.

time using processors. These prefix sums are used to write the elements of AN B in



