
Big Data Lecture Notes on March 6

Problem: 3

Input:
(1) A database DB of texts = {T1, T2, …, Tk}

(2) A set of patterns = {P1, P2, …, Pq} where

 MTi
k

i
=∑

=1

and NPi
q

i
=∑

=1

Output:
For each pattern output its occurrences in DB.

Algorithm:
(1) Build a generalized suffix tree Q on the strings in DB.

(2) for qi ≤≤1 do

 Match the characters of Pi with a unique path in Q starting from root.

(3) If we match all the characters of Pi and came to a node u, the leaves in the sub-tree rooted at u have all
the occurrences of Pi; if we cannot match all the characters of Pi then Pi does not occur in any text of DB.

Analysis:
(1) Time to build Q = O(M)

(2) Time to search for Pi = O(|Pi| + ki) where ki = # of occurrences of Pi in DB.

So, the total runtime = O(M + N + K) where K = ∑
=

q

i
ik

1

Problem: 4

Input:
Two strings S1 and S2.

Output:
The longest common substring between S1 and S2.

Example:
S1 = “desperate”

S2 = “lifespan”

Longest common substring = “esp”

S1 = a1a2…ai…an1.

S2 = b1b2…bj…bn2.

A trivial algorithm:
ji ,∀ compute the longest common substring starting at i of S1 and j of S2.

Fact:
We can solve this problem in O(M) time where M = n1 + n2

Algorithm:
(1) Build a generalized suffix tree Q of S1 and S2.

(2) Mark nodes in Q as follows:

A node u will be marked with 1 if the sub-tree rooted at u has at least one leaf corresponding to a suffix
from S1. A node u will be marked with 2 if the sub-tree rooted at u has at least one leaf corresponding to a
suffix from S2. This marking can be done through a traversal of the tree in O(M) time. If u is marked with
both 1 and 2, then the path label of u is common to S1 and S2.

(3) Do another traversal in the tree Q to identify the node with the largest string depth that is marked with
1 and 2. This takes O(M) time. So, the total runtime = O(M).

Problem: 5

Input:

Two strings S1 and S2 and an integer l.

Output:
Occurrences of substrings of S2 of length ≥ l in S1.

Algorithm:
The same as before except that we look for all the nodes marked with 1 and 2 whose string depth is ≥ l.

Problem: 5(a)
Input:
String S1 and a collection of strings C1, C2,…,Cq.

Output:
Occurrences of substrings of Ci of length ≥ l in S1, for qi ≤≤1 .

Fact:

This can be solved in O(M) time where M = |S1| + i

q

i
C∑

=1

Idea:
(1) Build a generalized suffix tree Q for C1, C2,…,Cq.

(2) Mark a node u if the sub-tree rooted at u has a leaf from S1 and a leaf from at least one of

 C1, C2,…,Cq. Report all the marked nodes of depth ≥ l.

Problem: 6

Input:
A set of strings S1, S2,…,Sn

Output:
l[2:n] such that l(i) = length of the longest common substring that occurs in at least i strings 2 ≤ i ≤ n .

Example:
 “length”, “strength”, “english”, “substring”, “link”

 Here: l(2) = 5

Fact:
We can solve this problem in O(Mn) time.

Proof:
(1) Build a generalized suffix tree Q for the given set of strings.

(2) For any node u in Q, let c[u] = # of distinct strings represented in the leaves of the subtree rooted at u.
Keep an array v[2:n]. Traverse tree Q. At the end of each traversal, v[i] is the largest string depth of any
node whose c[.] value is i.

(3) Note that v[i] is the length of the longest common substring that occurs in exactly i strings.

(4) To compute the l(i) values do a prefix maxima operation on v[n], v[n-1],…,v[2].

Computation of c[.] array:
Keep a bit array u[1:n] for each node u in Q.

u[i] = 1 if one of the leaves of the sub-tree rooted at u corresponds to a suffix of Si (where ni ≤≤1).

Do an inorder traversal of the tree. The bit array for any node u is the OR of the bit arrays of its children.

c[u] = # of 1’s in u[1:n].

Total runtime = O(Mn)

Problem: 7
All pairs suffix-prefix computation.

Problem*
Input:

S1, S2,…,Sn; MSi
k

i
=∑

=1

Output:
For every ordered pair (i, j), the length of the largest suffix of Si which is a prefix of Sj.

