Big Data Lecture Notes on March 6

Problem: 3

Input:

(1) A database $D B$ of texts $=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$
(2) A set of patterns $=\left\{P_{1}, P_{2}, \ldots, P_{q}\right\}$ where

$$
\sum_{i=1}^{k}\left|T_{i}\right|=M \text { and } \sum_{i=1}^{q}\left|P_{i}\right|=N
$$

Output:

For each pattern output its occurrences in $D B$.

Algorithm:

(1) Build a generalized suffix tree Q on the strings in $D B$.
(2) for $1 \leq i \leq q$ do

Match the characters of P_{i} with a unique path in Q starting from root.
(3) If we match all the characters of P_{i} and came to a node u, the leaves in the sub-tree rooted at u have all the occurrences of P_{i}; if we cannot match all the characters of P_{i} then P_{i} does not occur in any text of $D B$.

Analysis:

(1) Time to build $Q=\mathrm{O}(M)$
(2) Time to search for $P_{i}=\mathrm{O}\left(\left|P_{i}\right|+k_{i}\right)$ where $k_{i=\#}$ of occurrences of P_{i} in $D B$.

So, the total runtime $=\mathrm{O}(M+N+K)$ where $K=\sum_{i=1}^{q} k_{i}$

Problem: 4

Input:

Two strings S_{l} and S_{2}.

Output:

The longest common substring between S_{I} and S_{2}.

Example:

$S_{I}=$ "desperate"
$S_{2}=$ "lifespan"
Longest common substring = "esp"
$S_{l}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{i}} \ldots \mathrm{a}_{\mathrm{n} 1}$.
$S_{2}=\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{j}} \ldots \mathrm{b}_{\mathrm{n} 2}$.
A trivial algorithm: $\forall_{i, j}$ compute the longest common substring starting at i of S_{l} and j of S_{2}.
$S_{1}:$ xabxa
$S_{2}:$ babxba

Fact:

We can solve this problem in $\mathrm{O}(M)$ time where $M=n_{1}+n_{2}$

Algorithm:

(1) Build a generalized suffix tree Q of S_{I} and S_{2}.
(2) Mark nodes in Q as follows:

A node u will be marked with 1 if the sub-tree rooted at u has at least one leaf corresponding to a suffix from $S_{l \text {. }}$ A node u will be marked with 2 if the sub-tree rooted at u has at least one leaf corresponding to a suffix from S_{2}. This marking can be done through a traversal of the tree in $\mathrm{O}(M)$ time. If u is marked with both 1 and 2 , then the path label of u is common to S_{I} and S_{2}.
(3) Do another traversal in the tree Q to identify the node with the largest string depth that is marked with 1 and 2. This takes $\mathrm{O}(M)$ time. So, the total runtime $=\mathrm{O}(M)$.

Problem: 5

Input:

Two strings S_{l} and S_{2} and an integer l.

Output:

Occurrences of substrings of S_{2} of length $\geq l$ in S_{l}.

Algorithm:

The same as before except that we look for all the nodes marked with 1 and 2 whose string depth is $\geq l$.

Problem: 5(a)

Input:

String S_{l} and a collection of strings $C_{1}, C_{2}, \ldots, C_{q}$.

Output:

Occurrences of substrings of C_{i} of length $\geq l$ in S_{l}, for $1 \leq i \leq q$.

Fact:

This can be solved in $\mathrm{O}(M)$ time where $M=\left|S_{l}\right|+\sum_{i=1}^{q}\left|C_{i}\right|$
Idea:
(1) Build a generalized suffix tree Q for $C_{1}, C_{2}, \ldots, C_{q}$.
(2) Mark a node u if the sub-tree rooted at u has a leaf from S_{l} and a leaf from at least one of $C_{1}, C_{2}, \ldots, C_{q}$. Report all the marked nodes of depth $\geq l$.

Problem: 6

Input:

A set of strings $S_{1}, S_{2}, \ldots, S_{n}$

Output:

$l[2: n]$ such that $l(i)=$ length of the longest common substring that occurs in at least i strings $2 \leq i \leq n$.

Example:

"length", "strength", "english", "substring", "link"
Here: $l(2)=5$
Fact:
We can solve this problem in $\mathrm{O}(M n)$ time.
Proof:
(1) Build a generalized suffix tree Q for the given set of strings.
(2) For any node u in Q, let $c[u]=\#$ of distinct strings represented in the leaves of the subtree rooted at u. Keep an array $v[2: n]$. Traverse tree Q. At the end of each traversal, $v[i]$ is the largest string depth of any node whose $c[$.$] value is i$.
(3) Note that $v[i]$ is the length of the longest common substring that occurs in exactly i strings.
(4) To compute the $l(i)$ values do a prefix maxima operation on $v[n], v[n-1], \ldots, v[2]$.

Computation of $c[$.$] array:$

Keep a bit array $u[1: n]$ for each node u in Q.
$u[i]=1$ if one of the leaves of the sub-tree rooted at u corresponds to a suffix of $S_{i}($ where $1 \leq i \leq n)$.
Do an inorder traversal of the tree. The bit array for any node u is the OR of the bit arrays of its children.
$c[u]=\#$ of 1 's in $u[1: n]$.
Total runtime $=\mathrm{O}(M n)$

Problem: 7

All pairs suffix-prefix computation.
Problem*
Input:
$S_{l}, S_{2}, \ldots, S_{n} ; \sum_{i=1}^{k}\left|S_{i}\right|=M$

Output:

For every ordered pair (i, j), the length of the largest suffix of S_{i} which is a prefix of S_{j}.

