Big Data Lecture Notes on March 6

Problem: 3

Input:

(1) A database DB of texts = { $T_1, T_2, ..., T_k$ }

(2) A set of patterns = $\{P_1, P_2, ..., P_q\}$ where

$$\sum_{i=1}^{k} |T_i| = M \text{ and } \sum_{i=1}^{q} |P_i| = N$$

Output:

For each pattern output its occurrences in DB.

Algorithm:

(1) Build a generalized suffix tree Q on the strings in DB.

(2) for $1 \le i \le q$ do

Match the characters of P_i with a unique path in Q starting from root.

(3) If we match all the characters of P_i and came to a node u, the leaves in the sub-tree rooted at u have all the occurrences of P_i ; if we cannot match all the characters of P_i then P_i does not occur in any text of DB.

Analysis:

(1) Time to build Q = O(M)

(2) Time to search for $P_i = O(|P_i| + k_i)$ where $k_i = \#$ of occurrences of P_i in *DB*.

So, the total runtime = O(M + N + K) where $K = \sum_{i=1}^{q} k_i$

Problem: 4

 \square

Input:

Two strings S_1 and S_2 .

Output:

The longest common substring between S_1 and S_2 .

Example:

 S_1 = "desperate"

 S_2 = "lifespan" Longest common substring = "esp" S_1 = $a_1a_2...a_{i...}a_{n1}$. S_2 = $b_1b_2...b_{i...}b_{n2}$.

A trivial algorithm: $\forall_{i,j}$ compute the longest common substring starting at *i* of S_i and *j* of S_2 .

S₁: xabxa S₂: babxba

Fact:

We can solve this problem in O(M) time where $M = n_1 + n_2$

Algorithm:

(1) Build a generalized suffix tree Q of S_1 and S_2 .

(2) Mark nodes in Q as follows:

A node u will be marked with 1 if the sub-tree rooted at u has at least one leaf corresponding to a suffix from S_1 . A node u will be marked with 2 if the sub-tree rooted at u has at least one leaf corresponding to a suffix from S_2 . This marking can be done through a traversal of the tree in O(M) time. If u is marked with both 1 and 2, then the path label of u is common to S_1 and S_2 .

(3) Do another traversal in the tree Q to identify the node with the largest string depth that is marked with 1 and 2. This takes O(M) time. So, the total runtime = O(M).

Problem: 5

Input:

Two strings S_1 and S_2 and an integer l.

Output:

Occurrences of substrings of S_2 of length $\geq l$ in S_l .

Algorithm:

The same as before except that we look for all the nodes marked with 1 and 2 whose string depth is $\geq l$.

Problem: 5(a)

Input:

String S_1 and a collection of strings $C_1, C_2, ..., C_q$.

Output:

Occurrences of substrings of C_i of length $\geq l$ in S_l , for $1 \leq i \leq q$.

Fact:

This can be solved in O(M) time where $M = |S_I| + \sum_{i=1}^{q} |C_i|$

Idea:

(1) Build a generalized suffix tree Q for $C_1, C_2, ..., C_q$.

(2) Mark a node u if the sub-tree rooted at u has a leaf from S_1 and a leaf from at least one of

 $C_l, C_2, ..., C_q$. Report all the marked nodes of depth $\geq l$.

Problem: 6

Input:

A set of strings $S_1, S_2, ..., S_n$

Output:

l[2:n] such that l(i) =length of the longest common substring that occurs in at least *i* strings $2 \le i \le n$.

Example:

```
"length", "strength", "english", "substring", "link"
```

Here: l(2) = 5

Fact:

We can solve this problem in O(Mn) time.

Proof:

(1) Build a generalized suffix tree Q for the given set of strings.

(2) For any node u in Q, let c[u] = # of distinct strings represented in the leaves of the subtree rooted at u. Keep an array v[2:n]. Traverse tree Q. At the end of each traversal, v[i] is the largest string depth of any node whose c[.] value is i.

(3) Note that v[i] is the length of the longest common substring that occurs in exactly *i* strings.

(4) To compute the l(i) values do a prefix maxima operation on v[n], v[n-1], ..., v[2].

Computation of *c[.]* array:

Keep a bit array u[1:n] for each node u in Q.

u[i] = 1 if one of the leaves of the sub-tree rooted at *u* corresponds to a suffix of S_i (where $1 \le i \le n$). Do an inorder traversal of the tree. The bit array for any node *u* is the OR of the bit arrays of its children. c[u] = # of 1's in u[1:n].

Total runtime = O(Mn)

Problem: 7

All pairs suffix-prefix computation.

Problem*

Input:

$$S_1, S_2, \dots, S_n; \sum_{i=1}^k |S_i| = M$$

Output:

For every ordered pair (*i*, *j*), the length of the largest suffix of S_i which is a prefix of S_j .