Big Data Lecture Notes on March 6

Problem: 3

Input:
(1) A database DB of texts = {T}, T, ..., Ti}
(2) A set of patterns = {P,, P,, ..., P,} where

k q
E Tl.|=Mand2 |Pi|=N
=1 i=

Output:

For each pattern output its occurrences in DB.

Algorithm:
(/) Build a generalized suffix tree Q on the strings in DB.
(2)for 1=si=<gqdo

Match the characters of P; with a unique path in Q starting from root.

(3) If we match all the characters of P; and came to a node u, the leaves in the sub-tree rooted at u have all
the occurrences of P;; if we cannot match all the characters of P; then P; does not occur in any text of DB.

Analysis:
(1) Time to build O = O(M)
(2) Time to search for P; = O(|P;| + k;) where k;-# of occurrences of P; in DB.

q
So, the total runtime = O(M + N + K) where K = 2 k,

Problem: 4

Input:
Two strings S; and S.
Output:

The longest common substring between S; and S.

Example:

S; = “desperate”

S, = “lifespan”

Longest common substring = “esp”

Sz = b1b2. . bJ . .bnz.

A trivial algorithm: ¥/ ; compute the longest common substring starting at i of S; and j of S>.

S,:xabxa
S,: babxba

Fact:

We can solve this problem in O(M) time where M = n; + n;

Algorithm:
(/) Build a generalized suffix tree Q of S; and S..
(2) Mark nodes in Q as follows:

A node u will be marked with 1 if the sub-tree rooted at u has at least one leaf corresponding to a suffix
from S;. A node u will be marked with 2 if the sub-tree rooted at u has at least one leaf corresponding to a
suffix from S,. This marking can be done through a traversal of the tree in O(M) time. If u is marked with
both 1 and 2, then the path label of « is common to S; and S>.

(3) Do another traversal in the tree Q to identify the node with the largest string depth that is marked with
1 and 2. This takes O(M) time. So, the total runtime = O(M).

Problem: 5
Input:

Two strings S; and S, and an integer /.

Output:

Occurrences of substrings of S, of length = /in ;.
Algorithm:

The same as before except that we look for all the nodes marked with 1 and 2 whose string depth is = /.

Problem: 5(a)
Input:
String S; and a collection of strings C;, C,,...,C,.
Output:

Occurrences of substrings of C; of length = /in §;, for 1<i=<gq.
Fact:

q
This can be solved in O(M) time where M = |S,| + 2 C,|

1

Idea:
(1) Build a generalized suffix tree Q for C;, C5,...,C,.
(2) Mark a node u if the sub-tree rooted at u has a leaf from S, and a leaf from at least one of

Cy, C,,...,C,. Report all the marked nodes of depth = /.

Problem: 6
Input:
A set of strings S;, S5, ...,S,
Output:

[[2:n] such that /(i) = length of the longest common substring that occurs in at least i strings 2 <i<n.

Example:

“length”, “strength”, “english”, “substring”, “link”
Here: /(2)=5

Fact:

We can solve this problem in O(Mn) time.

Proof:

(/) Build a generalized suffix tree O for the given set of strings.

(2) For any node u in Q, let c¢/u] = # of distinct strings represented in the leaves of the subtree rooted at u.
Keep an array v/2:n]. Traverse tree Q. At the end of each traversal, v/i] is the largest string depth of any
node whose c¢/.] value is i.

(3) Note that v/i] is the length of the longest common substring that occurs in exactly 7 strings.

(4) To compute the /(i) values do a prefix maxima operation on v/n/, v/n-1],...,v[2].]

Computation of c/.] array:

Keep a bit array u/1:n] for each node « in Q.

ufi] = 1 if one of the leaves of the sub-tree rooted at u corresponds to a suffix of S; (where 1 =i < n).
Do an inorder traversal of the tree. The bit array for any node u is the OR of the bit arrays of its children.
cfu] =#of I’sinufl:n].

Total runtime = O(Mn) []

Problem: 7
All pairs suffix-prefix computation.
Problem*

Input:
k
St SanSii Y |S =M

Output:
For every ordered pair (i, j), the length of the largest suffix of S; which is a prefix of S;.

