
CSE5095 Research Topics in Big Data Analytics

Instructor: Professor Sanguthevar Rajasekaran
Note taker: Marius Nicolae

Mar 27, 2014

1 Association Rules Mining

Definition. An itemset is a set of items. A k-itemset is an itemset of size k.

Definition. A transaction is an itemset.

Definition. A rule is represented as X → Y where X 6= ∅, Y 6= ∅, X ∩ Y = ∅.

From here on, assume that we are given a database DB of transactions and
the number of transactions in the database is n. Let I be the set of distinct
items in the database and let d = |I|.

Definition. For an itemset X, we define σ(X) as the number of transactions
in which X occurs, i.e. σ(X) = |{T ∈ DB|X ⊆ T}|

Definition. The support of any rule X → Y is σ(X∪Y)
n .

Definition. The confidence of any rule X → Y is σ(X∪Y)
σ(X) .

Problem. Association Rules Mining
Input: A DB of transactions and two numbers: minSupport and minConfi-
dence.
Output: All rules X → Y whose support is ≥ minSupport and whose confi-
dence is ≥ minConfidence.

Definition. An itemset is frequent if σ(X) ≥ n ·minSupport

Finding association rules is generally a two step process: 1) identify all the
frequent itemsets and 2) for each frequent itemset generate relevant rules. For
example, if X is a frequent itemset, then consider rules of the kind: X \Y → Y
for all Y 6= ∅ (or, equivalently, rules of the form X1 → X2, X1 ∪X2 = X).

1.1 Identifying frequent itemsets

Idea: Use a level-wise strategy: generate all frequent 1-itemsets, then all fre-
quent 2-itemsets, and so on.

Note: The problem of finding the maximum k such that there exist frequent
k-itemsets is NP-hard.

1

1.1.1 A Brute Force Algorithm

To generate the frequent k-itemsets, a naive algorithm generates all the k-
itemsets. For each itemset it scans the database and checks if the itemset is
frequent. Assume that we store every transaction T as a bit array of size d
where T [i] is 1 if item i is in the transaction and 0 otherwise. Therefore, it takes
O(k) time to check if an itemset of size k can be found in a transaction. The
running time of the algorithm is then O(

(
d
k

)
nk).

1.1.2 The Apriori Principle:

• If X is not frequent then no superset of X is frequent.

• If X is frequent then every subset of X is also frequent.

Example: Assume minSupport= 1/4 and the database is:

Transaction
t1 Break, Milk, Salt
t2 Salt, Pepper, IceCream
t3 Milk, Salt
t4 Sugar, IceCream, Salt
t5 Milk, Coffee, Sugar
t6 IceCream, Salt
t7 IceCream
t8 IceCream, Sugar, Salt

Let Fk stand for the set of frequent k-itemsets, for any k. Then we have:
F1 = {(Milk), (Salt), (IceCream), (Sugar)}
F2 = {(Milk, Salt), (Salt, IceCream), (Salt, Sugar), (IceCream, Sugar)}
F3 = {(Salt, Sugar, IceCream)}
F4 = ∅

Note that the brute force algorithm will generate 7 1-itemsets followed by(
7
2

)
2-itemsets, followed by

(
7
3

)
3-itemsets, followed by

(
7
4

)
4-itemsets. In total,

the brute force algorithm will generate 98 itemsets. On the other hand, the
Apriori algorithm will generate 7 1−itemsets, then

(
4
2

)
2−itemsets, then 4·2 = 8

3−itemsets then a single 4−itemset, for a total of 22 itemsets.
The pseudocode for the Apriori algorithm is given next.

2

k := 1;
Compute F1 = {i ∈ I|σ(i) ≥ n ·minSupport};
while Fk 6= ∅ do

k := k + 1;
Generate candidates Ck from Fk−1;
for T ∈ DB do

for C ∈ Ck do
if C ⊆ T then

σ(C) := σ(C) + 1;
end

end

end
Fk := ∅;
for C ∈ Ck do

if σ(C) ≥ n ·minSupport then
Fk := Fk ∪ {C};

end

end

end
Algorithm 1: Apriori algorithm

The time to generate F1 is O(
∑n
i=1 |ti|) = O(nw) where w is the maximum

length of any transaction.

A heuristic: To avoid generating a candidate many times, we can keep any
itemset in increasing order of the items in it. When we generate a new itemset
from an existing one, we will only add elements larger than the largest element
in the existing itemset.

Questions:
A. How do we generate candidates Ck from Fk−1?
B. How do we compute the support of the candidates?

A. Generation of candidates

1. Fk−1 × F1 method: To every frequent k − 1 itemset add every frequent
item, to generate candidates.

2. Fk−1 × Fk−1 method: Let:
a1, a2, . . . , ak−2, ak−1 and
b1, b2, . . . , bk−2, bk−1 belong to Fk−1.

If ai = bi,∀i = 1, . . . , k−2 then generate candidate (a1, a2, . . . , ak−1, bk−1).
The time for candidate generation using this method is O(|Fk−1|2k)

Candidate Pruning: We can prune candidates using the Apriori principle, as
follows: if C is a candidate in Ck, check if every k − 1 subset of C is frequent
(∈ Fk−1). If not, discard the candidate. To check if a k − 1 itemset belongs to

3

Fk−1 we can use a Hash Tree. A Hash Tree is a tree where every node contains
a hash table. Itemsets are inserted in the tree based on the hash values of their
items. Specifically, at the root, hashing is done on the first item of the itemset
hashed. In the next level of the tree, hashing is done on the second item of the
itemset, etc. Thus, if the itemsets are of size k, then there will be k levels in
the tree.

Hash Tree example: Consider the following itemsets: (2, 3, 8), (3, 5, 6), (1, 4, 7),
(2, 3, 5), (3, 6, 8), (1, 5, 7), (2, 4, 7) and the hash function h(x) = x mod 3. Then
the hash tree looks as follows (empty subtrees omitted because of space limita-
tions).

Root

0

0

2

(3,6,8)

2

0

(3,5,6)

1

1

1

(1,4,7)

2

1

(1,5,7)

2

0

2

(2,3,8)
(2,3,5)

1

1

(2,4,7)

If we build a Hash Tree for Fk−1 then we can check if an itemset is in Fk−1
in O(k) time.

An itemset of size k has k different subsets of size k − 1. We can search
each subset in the hash tree in time O(k). Therefore the time for pruning is
O(|Ck|k2).

B. Support counting - Next time.

4

