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In this lecture we’ll present the linear time algorithm of (Kärkäinen and Sanders 2003) 
for the construction of the suffix array for any given input string. 
 
Let T = t0 t1 ... tm-1 be the given input string. 
For k = 0, 1, and 2 define Bk = {i ∈ [ 0, m] : i mod 3 = k} 
Let B = B1 ∪ B2. 
Let Si stand for the suffix of T starting at position i, for 0 ≤ i ≤ m-1. 
Let Sc denote the collection of suffixes Sj for each j ∈ C, where C  ⊆ [0, m-1]. 
 
Algorithm: 
1. Sort the suffixes SB; Let this sorted sequence be Q; 
2. Using the order obtained in step 1, sort the suffixes 𝑆!! to get Q′; 
3. Merge Q with Q′; 
 
Note: It suffices to assume that ∑ = [1, m] 
 
For k = 1 or 2 define: 
 Rk = [ tk tk+1 tk+2 ] [ tk+3 tk+4 tk+5 ] ... [ tmaxBk tmaxBk+1 tmaxBk+2 ] 
 
In this string, each substring of length 3 enclosed within square brackets is thought of as 
a single super character. Any such super character is an integer in the range 1,𝑚! .  
 
Example:  

Position t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 

T = 5 2 1 4 3 3 1 5 3 4 4 1 
 
1.  R1 = [ 2 1 4 ] [ 3 3 1 ] [ 5 3 4 ] [ 4 1 0 ] 
 R2 = [1 4 3 ] [ 3 1 5 ] [ 3 4 4 ] [ 1 0 0 ] 
 
Construct the string R = R1 R2. In the above example,  
 
R = [ 2 1 4 ] [ 3 3 1 ] [ 5 3 4 ] [ 4 1 0 ] [ 1 4 3 ] [ 3 1 5 ] [ 3 4 4 ] [ 1 0 0 ] 
 
Observation: The relative ordering of the suffixes in R is the same as the relative 
ordering of the suffixes in 𝑆!. 
 
1a. Sort the super characters in R using radix sort in linear time and replace each super 
character with its sorted rank. As a result, each super character is replaced with an 
integer in the range [1, |R|].  If the characters in R are now distinct, we are done with 
sorting SB. 



 

 

 
Rank 3 5 8 7 2 4 6 1 

R =  2 1 4 3 3 1 5 3 4 4 1 0 1 4 3 3 1 5 3 4 4  1 0 0 
 
1b. If the characters in R are not distinct, then recursively sort the suffixes in the 
resultant string (where each character is an integer in the range [1, |R|]). 
 
2.  To sort 𝑆!!: 
Let rank(Si) be the rank (among the suffixes in SB) of the suffix Si where i ∈ B. 
Note: Sj ≤ Sk where j, k ∈ B0 if and only if (tj, rank(Sj+1)) ≤ (tk, rank(Sk+1)) 
 Example1: S3 ≤ S0 since (4, 5) ≤ (5, 3) 
 Example2: S3 ≤ S9 since (4, 5) ≤ (4, 7) 
To sort 𝑆!!, sort pairs of the form (tj, rank(Sj+1)) for j ∈ B0 using integer sort.  This takes 
O(m) time. 
 
3. Merging Q and Q′: 
Let Si and Sj be two suffixes such that Si ∈ B0 and Sj ∈ B1 or B2 
 Case 1: Sj ∈ B1 
  Si ≤ Sj if and only if (ti, rank(Si+1)) ≤ (tj, rank(Sj+1)) 
 Case 2: Sj ∈ B2 
  Si ≤ Sj if and only if (ti, ti+1, rank(Si+2)) ≤ (tj, tj+1, rank(Sj+2)) 
 
Let T(m) be the RUN TIME of this algorithm on any string of length m.  
 
Then, T(m) = T(⅔ m) + O(m) = O(m). 
  
Note: This algorithm is known as the skew algorithm (since the split is not ½, ½). 
 
 
DATA MINING 
 
Association Rules Mining: 
Input: A set of transactions  = {t1, t2, ..., tn} 
Let I be a set of possible items. Let I = {i1, i2, ..., id}. 
Each ti ⊆ I, 1 ≤ i ≤ n. 
 
An association rule is an implication X→Y where X ≠ ϕ; Y ≠ ϕ; 𝑋 ∩ 𝑌 = 𝜙; 𝑋 ⊆
𝐼; and  𝑌 ⊆ 𝐼. 
 
Definition: An itemset is a set of items.  A k-itemset is an itemset with k items. 
Let X be and itemset.  Then the support for X, denoted as 𝜎 𝑋 , is defined as the 
number of transactions that contain X. 
 



 

 

Support for a rule X→Y is 𝜎(𝑋 ∪ 𝑌)/𝑛. 
 
Confidence for the rule X→Y is 𝜎(𝑋 ∪ 𝑌)/𝜎(𝑋). 
 
Problem:  
Given a database DB of transactions, and two real numbers minSupport and 
minConfidence, find all the rules X→Y whose support is ≥ minSupport and whose 
confidence is ≥ minConfidence. 
 
Definition: An itemset is frequent if its support is ≥ n. minSupport. 
 
The problem of finding association rules is normally done in two steps. 
 
 1. Find all the frequent itemsets; and 
 2. Using the frequent itemsets generate all the relevant association rules. 
 
Example: If X is frequent and X = X1 ∪ X2, then check if X1→X2 has enough confidence, 
for every nonempty and proper subset X1 of X. 


