

CSE 5095: Research Topics in Big Data Analytics
Lecture 16: 3/25/14

Professor Rajasekaran
Notes by Christopher Kuhn

In this lecture we’ll present the linear time algorithm of (Kärkäinen and Sanders 2003)
for the construction of the suffix array for any given input string.

Let T = t0 t1 ... tm-1 be the given input string.
For k = 0, 1, and 2 define Bk = {i ∈ [0, m] : i mod 3 = k}
Let B = B1 ∪ B2.
Let Si stand for the suffix of T starting at position i, for 0 ≤ i ≤ m-1.
Let Sc denote the collection of suffixes Sj for each j ∈ C, where C ⊆ [0, m-1].

Algorithm:
1. Sort the suffixes SB; Let this sorted sequence be Q;
2. Using the order obtained in step 1, sort the suffixes 𝑆!! to get Q′;
3. Merge Q with Q′;

Note: It suffices to assume that ∑ = [1, m]

For k = 1 or 2 define:
 Rk = [tk tk+1 tk+2] [tk+3 tk+4 tk+5] ... [tmaxBk tmaxBk+1 tmaxBk+2]

In this string, each substring of length 3 enclosed within square brackets is thought of as
a single super character. Any such super character is an integer in the range 1,𝑚! .

Example:

Position t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

T = 5 2 1 4 3 3 1 5 3 4 4 1

1. R1 = [2 1 4] [3 3 1] [5 3 4] [4 1 0]
 R2 = [1 4 3] [3 1 5] [3 4 4] [1 0 0]

Construct the string R = R1 R2. In the above example,

R = [2 1 4] [3 3 1] [5 3 4] [4 1 0] [1 4 3] [3 1 5] [3 4 4] [1 0 0]

Observation: The relative ordering of the suffixes in R is the same as the relative
ordering of the suffixes in 𝑆!.

1a. Sort the super characters in R using radix sort in linear time and replace each super
character with its sorted rank. As a result, each super character is replaced with an
integer in the range [1, |R|]. If the characters in R are now distinct, we are done with
sorting SB.

Rank 3 5 8 7 2 4 6 1

R = 2 1 4 3 3 1 5 3 4 4 1 0 1 4 3 3 1 5 3 4 4 1 0 0

1b. If the characters in R are not distinct, then recursively sort the suffixes in the
resultant string (where each character is an integer in the range [1, |R|]).

2. To sort 𝑆!!:
Let rank(Si) be the rank (among the suffixes in SB) of the suffix Si where i ∈ B.
Note: Sj ≤ Sk where j, k ∈ B0 if and only if (tj, rank(Sj+1)) ≤ (tk, rank(Sk+1))
 Example1: S3 ≤ S0 since (4, 5) ≤ (5, 3)
 Example2: S3 ≤ S9 since (4, 5) ≤ (4, 7)
To sort 𝑆!!, sort pairs of the form (tj, rank(Sj+1)) for j ∈ B0 using integer sort. This takes
O(m) time.

3. Merging Q and Q′:
Let Si and Sj be two suffixes such that Si ∈ B0 and Sj ∈ B1 or B2
 Case 1: Sj ∈ B1
 Si ≤ Sj if and only if (ti, rank(Si+1)) ≤ (tj, rank(Sj+1))
 Case 2: Sj ∈ B2
 Si ≤ Sj if and only if (ti, ti+1, rank(Si+2)) ≤ (tj, tj+1, rank(Sj+2))

Let T(m) be the RUN TIME of this algorithm on any string of length m.

Then, T(m) = T(⅔ m) + O(m) = O(m).

Note: This algorithm is known as the skew algorithm (since the split is not ½, ½).

DATA MINING

Association Rules Mining:
Input: A set of transactions = {t1, t2, ..., tn}
Let I be a set of possible items. Let I = {i1, i2, ..., id}.
Each ti ⊆ I, 1 ≤ i ≤ n.

An association rule is an implication X→Y where X ≠ ϕ; Y ≠ ϕ; 𝑋 ∩ 𝑌 = 𝜙; 𝑋 ⊆
𝐼; and 𝑌 ⊆ 𝐼.

Definition: An itemset is a set of items. A k-itemset is an itemset with k items.
Let X be and itemset. Then the support for X, denoted as 𝜎 𝑋 , is defined as the
number of transactions that contain X.

Support for a rule X→Y is 𝜎(𝑋 ∪ 𝑌)/𝑛.

Confidence for the rule X→Y is 𝜎(𝑋 ∪ 𝑌)/𝜎(𝑋).

Problem:
Given a database DB of transactions, and two real numbers minSupport and
minConfidence, find all the rules X→Y whose support is ≥ minSupport and whose
confidence is ≥ minConfidence.

Definition: An itemset is frequent if its support is ≥ n. minSupport.

The problem of finding association rules is normally done in two steps.

 1. Find all the frequent itemsets; and
 2. Using the frequent itemsets generate all the relevant association rules.

Example: If X is frequent and X = X1 ∪ X2, then check if X1→X2 has enough confidence,
for every nonempty and proper subset X1 of X.

