CSE5095: Research Topics in Big Data Analytics
Professor Sanguthevar Rajasekaran
Note Taker: Nhan Nguyen
Date: $13^{\text {th }}$ March 2014

Lecture Recap:

In the last lecture, we learnt about the suffix-prefix problem. We have shown that:

- We can solve the suffix-prefix problem in $O\left(M+n^{2}\right)$ time where $M=\sum_{i=1}^{n}\left|S_{i}\right|$.
- We can construct a suffix array for a string of size m in $O(m)$ time.
- The exact string matching problem can be solved using a suffix array and binary search in $O(n \log m)$ time.

In this lecture, we'll show that string matching can be done in $O(n+\log m)$ time.

Lemma:

We can search for a pattern P in a text T in $O(n+\log m)$ time where $n=|P|$ and $m=|T|$, given the suffix array for T.

Proof:

Let S_{i} stand for the suffix of T starting at position i, for $1 \leq i \leq m$. Let $S A[1: m]$ be the suffix array for T. Specifically, $S A[j]$ is the starting position in T of the j th smallest suffix of T.
For any two suffixes S_{i} and S_{j}, let $L C P(i, j)$ be the length of their longest common prefix.

Example:

If $T=$ gaagcctgat, then
$\operatorname{LCP}(1,8)=2$.
Assume that we can get $L C P(i, j)$ in $O(1)$ time for any i and j. From hereon, we let $L C P(i, j)$ denote the length of the longest common prefix between the i th smallest and the j th smallest suffixes of T. To search for P in T, we will use binary search (on the suffix array) again but with some crucial modifications. Note that in any iteration of the binary search we have three integers L, M, and R. Here L is the left boundary and R is the right boundary. M is nothing but $(L+R) / 2$. Note that in any iteration of the binary search we compare P and suffix M to see whether there is a match, P will be to the left of suffix M, or P will be the right of suffix M. (Recall that suffix k refers to the k th smallest suffix of T.) We keep track of the length of the longest common prefix between P and suffix L. Let this be l. We also keep track of the length of the longest common prefix between P and suffix R. Let this be r.

Call a comparison of a character of P with any character (in T) as redundant if this character of P has already been compared with a character (in T). We want to minimize the number of redundant comparisons. The following algorithm ensures that there will be at most one redundant comparison in any iteration of the binary search. Let $M L R=\max \{l, r\}$.

- Case 1: $l=r$

We start the comparison between P and suffix M starting from position $(l+1)$.
Note that in this case $l=r=M L R$.

- Case 2: $l>r$.
- Case 2a: $L C P(L, M)>l$

In this case $P>\operatorname{suffix} M$
Set $L=M$, move on to the next iteration.
. Case 2b: $L C P(L, M)<l$

In this case $P<$ suffix M
Set $R=M ; r=L C P(L, M)$;

- Case 2c: $L C P(L, M)=l$

In this case, we start the comparison of P starting from position $M L R+1$ in suffix M. Depending on how P and suffix M compare, the binary search will proceed.

- Case 3: $l<r$. This case is analogous to Case 2.

Anlysis:

Call a comparison of a character in P as redundant if this character has already been compared.
In any iteration of the binary search, either we terminate the search, or do not do any character comparison of P, or start comparing from position $M L R+1$. When we start comparison of P from position $M L R+1$, this character might have already been compared (in a previous iteration). Characters to the right of this character in P would not have been compared before.
Note: in any iteration, we only do at most one redundant comparison.
\rightarrow Total number of comparisons is $O(n+\log m)$.

Construction of the $L C P$ array

Let $L C P(i, j)$ stand for the length of the longest common prefix between the i th smallest and the j th smallest suffixes of M. Think of a tree for binary search, as follows:

We have a complete binary tree with $(1, m)$ as the root. Any internal node (i, j) will have two children $\left(i,\left\lfloor\frac{i+j}{2}\right\rfloor\right) \&\left(\left\lfloor\frac{i+j}{2}\right\rfloor, j\right)$
There are m leaves $(1,1),(1,2),(2,3),(3,4), \ldots,(m-1, m)$.
To compute $L C P(i, i+1)$ for any i we do a lexicographic DFS on the suffix tree for T.
Let u be the internal node that is closest to the root among the nodes visited between leaf $S A[i]$ and leaf $S A[i+1]$.
Then, we can see that $L C P(i, i+1)=$ the string depth of node u.
\rightarrow we can compute all the leaf $L C P$ values in $O(m)$ time.

Then compute $L C P(i, j)$ for any $j \geq(i+2)$ using the following
FACT: $L C P(i, j)=\min _{k=i}^{j-1} L C P(k, k+1)$
Proof:
$L C P(i, j) \leq L C P(k, k+1) \forall k=i \cdots j-1$
$\rightarrow L C P(i, j) \leq \min _{k=i}^{j-1} L C P(k, k+1)$.

In this case, $L C P(i, i+2) \geq \min \{L C P(i, i+1), L C P(i+1, i+2)\}$.
\rightarrow We can extended this to see that $L C P(i, j) \geq \min _{k=i}^{j-1} L C P(k, k+1)$.
Question: How do we construct the suffix array without going through the the suffix tree construction?

Three teams have proposed linear time algorithms:

- KÄRKÄINNEN, SANDERS 2003
- KO, ALURU 2003
- KIM, SIM, PARK, PARK 2003

Now we will see the skew algorithm of (KÄRKÄINNEN, SANDERS 2003).
Let $\mathrm{T}=t_{0} t_{1} t_{2} t_{3} t_{4} t_{5} \ldots t_{m-1}$. W.l.o.g. assume that $m=3 q$ for some integer q.
The idea: Recursively sort the suffixes that start at positions i such that $i \bmod 3 \neq 0$.
Then use this ordering to find the ordering of the remaining one third suffixes.

Notations:

Let $B_{k}=\{i \in[0, m]: i \bmod 3=k\}$ with $k=0,1,2$.
Let S_{i} be the suffix of T starting from position i.
Let S_{C} be the set of suffixes starting from positions in C, where C is a set of integers.
Let $B=B_{1} \bigcup B_{2}$.
(1) Sort the suffixes S_{B}; Let Q be the sorted list.
(2) Using the above, sort the suffixes $S_{B_{0}}$; Let Q^{\prime} be the sorted list.
(3) Merge Q and Q^{\prime}.

Note: If sufficies to assume that $\Sigma=\{1,2,3, \ldots, m\}$. (TBC)

