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Lecture Recap:
In the last lecture, we learnt about the suffix-prefix problem. We have shown that:
- We can solve the suffix-prefix problem in O(M + n2) time where M =

∑n
i=1 |Si|.

- We can construct a suffix array for a string of size m in O(m) time.
- The exact string matching problem can be solved using a suffix array and binary search in O(n logm) time.

In this lecture, we’ll show that string matching can be done in O(n + logm) time.

Lemma:
We can search for a pattern P in a text T in O(n+ logm) time where n = |P | and m = |T |, given the suffix
array for T .

Proof:
Let Si stand for the suffix of T starting at position i, for 1 ≤ i ≤ m. Let SA[1 : m] be the suffix array for
T . Specifically, SA[j] is the starting position in T of the jth smallest suffix of T .

For any two suffixes Si and Sj , let LCP (i, j) be the length of their longest common prefix.

Example:
If T = gaagcctgat, then
LCP (1, 8) = 2.
Assume that we can get LCP (i, j) in O(1) time for any i and j. From hereon, we let LCP (i, j) denote the
length of the longest common prefix between the ith smallest and the jth smallest suffixes of T . To search
for P in T , we will use binary search (on the suffix array) again but with some crucial modifications. Note
that in any iteration of the binary search we have three integers L,M, and R. Here L is the left boundary
and R is the right boundary. M is nothing but (L+R)/2. Note that in any iteration of the binary search we
compare P and suffix M to see whether there is a match, P will be to the left of suffix M , or P will be the
right of suffix M . (Recall that suffix k refers to the kth smallest suffix of T .) We keep track of the length of
the longest common prefix between P and suffix L. Let this be l. We also keep track of the length of the
longest common prefix between P and suffix R. Let this be r.

Call a comparison of a character of P with any character (in T ) as redundant if this character of P has
already been compared with a character (in T ). We want to minimize the number of redundant comparisons.
The following algorithm ensures that there will be at most one redundant comparison in any iteration of the
binary search. Let MLR = max{l, r}.

• Case 1: l = r
We start the comparison between P and suffix M starting from position (l + 1).
Note that in this case l = r = MLR.

• Case 2: l > r.

· Case 2a: LCP (L,M) > l
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In this case P > suffix M
Set L = M , move on to the next iteration.

· Case 2b: LCP (L,M) < l
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In this case P < suffix M
Set R = M ; r = LCP (L,M);

· Case 2c: LCP (L,M) = l
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In this case, we start the comparison of P starting from position MLR+1 in suffix M . Depending
on how P and suffix M compare, the binary search will proceed.

• Case 3: l < r. This case is analogous to Case 2.

Anlysis:
Call a comparison of a character in P as redundant if this character has already been compared.
In any iteration of the binary search, either we terminate the search, or do not do any character comparison
of P , or start comparing from position MLR + 1. When we start comparison of P from position MLR + 1,
this character might have already been compared (in a previous iteration). Characters to the right of this
character in P would not have been compared before.
Note: in any iteration, we only do at most one redundant comparison.
→ Total number of comparisons is O(n + logm).
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Construction of the LCP array
Let LCP (i, j) stand for the length of the longest common prefix between the ith smallest and the jth smallest
suffixes of M . Think of a tree for binary search, as follows:

(1,8)

(1,4) (4,8)

(1,2) (2,4) (4,6) (6,8)

(1,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8)

We have a complete binary tree with (1,m) as the root. Any internal node (i, j) will have two children
(i, b i+j

2 c)&(b i+j
2 c, j)

There are m leaves (1, 1), (1, 2), (2, 3), (3, 4), . . . , (m− 1,m).
To compute LCP (i, i + 1) for any i we do a lexicographic DFS on the suffix tree for T .
Let u be the internal node that is closest to the root among the nodes visited between leaf SA[i] and leaf
SA[i + 1].
Then, we can see that LCP (i, i + 1) = the string depth of node u.
→ we can compute all the leaf LCP values in O(m) time.

Root

u

SA[i] SA[i+1]

Then compute LCP (i, j) for any j ≥ (i + 2) using the following

FACT: LCP (i, j) =
j−1
min
k=i

LCP (k, k + 1)

Proof:
LCP (i, j) ≤ LCP (k, k + 1)∀k = i · · · j − 1

→ LCP (i, j) ≤
j−1
min
k=i

LCP (k, k + 1).
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In this case, LCP (i, i + 2) ≥ min{LCP (i, i + 1), LCP (i + 1, i + 2)}.

→ We can extended this to see that LCP (i, j) ≥
j−1
min
k=i

LCP (k, k + 1). �

Question: How do we construct the suffix array without going through the the suffix tree construction?

Three teams have proposed linear time algorithms:
- KÄRKÄINNEN, SANDERS 2003
- KO, ALURU 2003
- KIM, SIM, PARK, PARK 2003

Now we will see the skew algorithm of (KÄRKÄINNEN, SANDERS 2003).
Let T = t0t1t2t3t4t5 . . . tm−1. W.l.o.g. assume that m = 3q for some integer q.
The idea: Recursively sort the suffixes that start at positions i such that i mod 3 6= 0.
Then use this ordering to find the ordering of the remaining one third suffixes.

Notations:
Let Bk = {i ∈ [0,m] : i mod 3 = k} with k = 0, 1, 2.
Let Si be the suffix of T starting from position i.
Let SC be the set of suffixes starting from positions in C, where C is a set of integers.
Let B = B1

⋃
B2.

1© Sort the suffixes SB ; Let Q be the sorted list.
2© Using the above, sort the suffixes SB0

; Let Q′ be the sorted list.
3© Merge Q and Q′.

Note: If sufficies to assume that Σ = {1, 2, 3, . . . ,m}. (TBC)
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