
































CSE 3500 Algorithms and Complexity — Fall 2016
Lecture 9: September 27, 2016

Hints on Homework 1

e Problem 1: When analyzing nested loops start from the innermost loop and progress
outward. As an example, consider:

Result = 0;
for 1 =1ton do
for j=1toido
Result++;

The instruction in the second for loop takes one unit of time per execution. As a

result, the second for loop takes ¢ time. This in turn means that the run time of the

first for loop is Y1 ;i = "(";1) = O(n?).

e Problem 2c¢: Let f(n) and g(n) be two non-negative functions of n. We say f(n) =

o(g(n)) if lim, o ’;((Z))) = 0. As an example, let f(n) = n? and g(n) = n?*loglogn.
Then lim,,_, J;((Z))) = lim,, 00 m = 0. Thus, in this case f(n) = o(g(n)).

e A general hint: When comparing two functions, it might help to express both of them
as 2 to the power of some functions and compare the exponents. For example consider
the two functions fi(n) = \/n and fo(n) = 2VIogn  We note that vn = 20/2)lgn,
When we compare the exponents of these two functions we realize that fi(n) is larger
than fo(n).

e Here is a (small) list of functions in increasing order (In this list € is any constant such
that 0 < e < 1 and « is a constant > 0):

(1), (logn), logn, (logn)**, ologn) pe py plte ont on gntte

e Problem 3b: max{f(n),g(n)} is nothing but the pointwise maximum between f(n)
and g(n).

e We can easily see that max{f(n),g(n)} = O(f(n) + g(n)) since max{f(n),g(n)} <
(f(n) +g(n)).



Master Theorem

We studied the Master theorem in the last lecture.
There are recurrence relations that may not be solvable using the Master theorem.

As an example, consider the recurrence relation: T'(n) = 277(n/3) + n32vVioen  Here
a=27,b=3,and f(n) = n2Ve", ploge = n3 Tt seems like case 3 may be applicable.
For case 3 to apply, it should be the case that there exists a constant € > 0 such that
f(n) = Q(n'*srne). le., ndoVioen Q(n®nc). In other words, oV/logn Q(ne).

However, there is no such constant since 2V'°¢" = o(n¢) for any constant € > 0.

Solving a recurrence relation by induction

Another technique for solving a recurrence relation uses a guess and a proof by induc-
tion.

Steps involved in this technique are:

1. Guess a solution to the recurrence relation;
2. Attempt to prove the guess by induction;
3. Iterate if there is a need.

An Example: Consider the recurrence relation: T'(n) = 27'(n/2) + n. We make the
following guess: T'(n) < cnlogn for some constant c.

Now a proof by induction is attempted. The base case is easy.

Induction step: Assume the hypothesis for all inputs of size up to n — 1. We’'ll prove
it for n.

T(n) = 2T (n/2) + n. Applying the induction hypothesis to T'(n/2) we realize that
T(n) < 2c% log (%) +n = cnlogn — (¢ — 1)n. The RHS will be < enlogn when ¢ > 1.
Thus we infer that T'(n) < nlogn.

Quick sort

We have revisited the quick sort algorithm and analyzed its worst case and best case
run times.

Lemma: The average run time of quick sort is O(nlogn) on any sequence of n ele-
ments.



e Proof: Let X = ki, ko, ..., k, be the input sequence and let m,ms,...,m, be the

sorted order of X.

Let
{ 1 if m; and 7; will be compared

0 otherwise.

Total number of comparisons made in the algorithm is 377, ., 371" X;;. We are inter-
ested in computing the expected value of this.

The average number of comparisons made in the algorithm A(n) is given by

A(n) = E[A; Zij] = Z ZE[X@-] (1)

using the fact that E[X; + X5] = E[X,] + E[X3].

Let p;; be the probability that m; and 7; will be compared in the quick sort algorithm.

Substituting this in equation 1, we get:
An) = > > i (2)
j=i+1i=1

The proof will be completed in the next lecture.



