






















CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 9: September 27, 2016

Hints on Homework 1

• Problem 1: When analyzing nested loops start from the innermost loop and progress

outward. As an example, consider:

Result = 0;

for i = 1 to n do

for j = 1 to i do

Result++;

The instruction in the second for loop takes one unit of time per execution. As a

result, the second for loop takes i time. This in turn means that the run time of the

first for loop is
∑n
i=1 i = n(n+1)

2
= Θ(n2).

• Problem 2c: Let f(n) and g(n) be two non-negative functions of n. We say f(n) =

o(g(n)) if limn→∞
f(n))
g(n)

= 0. As an example, let f(n) = n2 and g(n) = n2 log log n.

Then limn→∞
f(n))
g(n)

= limn→∞
1

log logn
= 0. Thus, in this case f(n) = o(g(n)).

• A general hint: When comparing two functions, it might help to express both of them

as 2 to the power of some functions and compare the exponents. For example consider

the two functions f1(n) =
√
n and f2(n) = 2

√
logn. We note that

√
n = 2(1/2) logn.

When we compare the exponents of these two functions we realize that f1(n) is larger

than f2(n).

• Here is a (small) list of functions in increasing order (In this list ε is any constant such

that 0 < ε < 1 and α is a constant > 0):

Θ(1), (log n)ε, log n, (log n)1+α, 2(logn)ε , nε, n, n1+α, 2n
ε

, 2n, 2n
1+α

• Problem 3b: max{f(n), g(n)} is nothing but the pointwise maximum between f(n)

and g(n).

• We can easily see that max{f(n), g(n)} = O(f(n) + g(n)) since max{f(n), g(n)} ≤
(f(n) + g(n)).



Master Theorem

• We studied the Master theorem in the last lecture.

• There are recurrence relations that may not be solvable using the Master theorem.

• As an example, consider the recurrence relation: T (n) = 27T (n/3) + n32
√

logn. Here

a = 27, b = 3, and f(n) = n32
√

logn. nlogb a = n3. It seems like case 3 may be applicable.

For case 3 to apply, it should be the case that there exists a constant ε > 0 such that

f(n) = Ω(nlogb anε). I.e., n32
√

logn = Ω(n3nε). In other words, 2
√

logn = Ω(nε).

However, there is no such constant since 2
√

logn = o(nε) for any constant ε > 0.

Solving a recurrence relation by induction

• Another technique for solving a recurrence relation uses a guess and a proof by induc-

tion.

• Steps involved in this technique are:

1. Guess a solution to the recurrence relation;

2. Attempt to prove the guess by induction;

3. Iterate if there is a need.

• An Example: Consider the recurrence relation: T (n) = 2T (n/2) + n. We make the

following guess: T (n) ≤ cn log n for some constant c.

• Now a proof by induction is attempted. The base case is easy.

• Induction step: Assume the hypothesis for all inputs of size up to n − 1. We’ll prove

it for n.

• T (n) = 2T (n/2) + n. Applying the induction hypothesis to T (n/2) we realize that

T (n) ≤ 2cn
2

log
(
n
2

)
+ n = cn log n− (c− 1)n. The RHS will be ≤ cn log n when c ≥ 1.

Thus we infer that T (n) ≤ n log n.

Quick sort

• We have revisited the quick sort algorithm and analyzed its worst case and best case

run times.

• Lemma: The average run time of quick sort is O(n log n) on any sequence of n ele-

ments.



• Proof: Let X = k1, k2, . . . , kn be the input sequence and let π1, π2, . . . , πn be the

sorted order of X.

Let

Xij =

{
1 if πi and πj will be compared

0 otherwise.

Total number of comparisons made in the algorithm is
∑n
j=i+1

∑n
i=1Xij. We are inter-

ested in computing the expected value of this.

The average number of comparisons made in the algorithm A(n) is given by

A(n) = E[
n∑

j=i+1

n∑
i=1

Xij] =
n∑

j=i+1

n∑
i=1

E[Xij] (1)

using the fact that E[X1 +X2] = E[X1] + E[X2].

Let pij be the probability that πi and πj will be compared in the quick sort algorithm.

Then, E[Xij] = 1× pij + 0× (1− pij) = pij.

Substituting this in equation 1, we get:

A(n) =
n∑

j=i+1

n∑
i=1

pij. (2)

The proof will be completed in the next lecture.


