

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 8: September 22, 2016

Master Theorem

• In the last lecture we showed how to use the repeated substitutions technique to solve

a recurrence relation. In this lecture we study the Master theorem.

• The Master theorem considers a recurrence relation of the kind:

T (n) =

{
c if n ≤ d

aT (n/b) + f(n) if n > d

where a > 0, b > 1, c, and d are integer constants, and f(n) is a non-negative integer

function of n.

• There are three cases to consider and in each case we compare nlogb a with f(n).

• Case 1: f(n) = O(nlogb a−ε) for some constant ε > 0. In this case the solution is:

T (n) = Θ(nlogb a).

• Case 2: nlogb a = Θ(f(n)). In this case the solution is: T (n) = Θ(f(n) log n).

• Case 3: nlogb a = O(f(n)/nε) for some constant ε > 0 and there exists a constant q < 1

such that af(n/b) ≤ qf(n). In this case, T (n) = Θ(f(n)).

Example 1

• The recurrence relation for binary search we obtained was:

T (n) =

{
1 if n ≤ 1

T (n/2) + 1 if n > 1

• For this recurrence relation a = 1, b = 2 and f(n) = 1. nlogb a = nlog2 1 = 1. Thus,

f(n) = Θ(nlogb a. As a result, case 2 holds and we infer that T (n) = Θ(f(n) log n) =

Θ(log n).

Example 2

• The recurrence relation for merge sort is:

T (n) =

{
1 if n ≤ 2

2T (n/2) + n if n > 2

• For this recurrence relation a = 2, b = 2 and f(n) = n. nlogb a = nlog2 2 = n. Thus,

f(n) = Θ(nlogb a. As a result, case 2 holds and we infer that T (n) = Θ(f(n) log n) =

Θ(n log n).

Example 3

• Consider the following recurrence relation:

T (n) =

{
1 if n ≤ 2

5T (n/2) + n2 if n > 2

• For this recurrence relation a = 5, b = 2 and f(n) = n2. nlogb a = nlog2 5. Note that

log2 5 > 2.32. Thus, for a value of ε = 0.3, f(n) = O(nlogb a−ε). This means that

case 1 holds and hence T (n) = Θ(nlog2 5). This is what we got using the repeated

substitutions technique as well. Note that the choice of ε is not unique. For example,

we could have chosen ε to be 0.2.

Example 4

• Now consider the following recurrence relation:

T (n) =

{
1 if n ≤ 2

12T (n/3) + n3 if n > 2

• For this recurrence relation a = 12, b = 3 and f(n) = n3. nlogb a = nlog3 12. Note that

log3 12 < 2.3. Thus, for a choice of ε = 0.5, nlogb a = O
(
f(n)
n0.5

)
. Also, a f(n/b) =

12(n/3)3 = (12/27)n3. In other words, a f(n/b) ≤ qf(n) for q = (12/27) which is less

than one. As a result, case 3 holds. Therefore, we conclude that T (n) = Θ(n3).

Quick sort

• Input: X = k1, k2, . . . , kn; Output: Sorted X.

• The quick sort algorithm employs divide-and-conquer and works as follows:

QuickSort(X)

if n = 1 then quit;

if n = 2 then

{if k1 > k2 then swap k1 and k2; quit;}
Pick a pivot element k from X;

Partition X into X1 and X2 using k as follows:

X1 = {q ∈ X : q < k} and X2 = {q ∈ X : q > k};
Recursively sort X1 to get Y1;

Recursively sort X2 to get Y2;

Output Y1, k, Y2;

Analysis of quick sort

• Let T (n) be the run time of quick sort on any input of size n.

• Given that partitioning takes n comparisons, we see that: T (n) = T (|X1|)+T (|X2|)+n.

• One of the worst cases happens when the input is already in sorted order. In this case,

whenever a recursive call is made, one of the two parts is empty.

• The recurrence relation for T (n) corresponding to the above worst case is: T (n) =

T (n − 1) + n = T (n − 2) + (n − 1) + n = T (n − 3) + (n − 2) + (n − 1) + n = · · · =∑n
i=1 i = n(n+1)

2
= Θ(n2).

• Consider the possibility that whenever a recursive call is made, both X1 and X2 are

of the same size. In this case the recurrence relation for T (n) will become: T (n) =

2T
(
n
2

)
+n. This solves to: T (n) = Θ(n log n) (using the Master theorem, for example).

This is one of the best cases.

• In the next lecture we will show that the expected run time of quick sort is O(n log n).

