

P -‘.if.'?s,_‘r -r_.ﬁ{r"_ f#" .;p_‘-ﬂ!
- ;_ pL 3 bRy _|‘

TR LAl J S\
"',"v ‘\\\ :‘ 5‘

CSE 3500 Algorithms and Complexity — Fall 2016
Lecture 8: September 22, 2016

Master Theorem

e In the last lecture we showed how to use the repeated substitutions technique to solve
a recurrence relation. In this lecture we study the Master theorem.

e The Master theorem considers a recurrence relation of the kind:

c ifn<d
T(n) = { aT(n/b) + f(n) ifn>d

where a > 0,b > 1,¢, and d are integer constants, and f(n) is a non-negative integer
function of n.

e There are three cases to consider and in each case we compare n'°%® with f(n).

e Case 1: f(n) = O(n'°%*~¢) for some constant ¢ > 0. In this case the solution is:
T(n) = O(n'&r).

e Case 2: n'°% = O(f(n)). In this case the solution is: T'(n) = ©(f(n)logn).

e Case 3: n'°&:2 = O(f(n)/n) for some constant € > 0 and there exists a constant ¢ < 1
such that af(n/b) < qf(n). In this case, T'(n) = O(f(n)).

Example 1

e The recurrence relation for binary search we obtained was:

1 ifn<l1
Tim) — <
(n) { T(n/2)+1 ifn>1
e For this recurrence relation a = 1,0 = 2 and f(n) = 1. nl°®? = plos21 = 1. Thus,
f(n) = ©(n'°%* As a result, case 2 holds and we infer that T'(n) = O(f(n)logn) =
O©(logn).

Example 2

e The recurrence relation for merge sort is:

1 ifn<2
T(n)= -
(n) { 2T'(n/2) +n ifn>2

e For this recurrence relation a = 2,0 = 2 and f(n) = n. n'°®?% = nle22 = n_ Thus,

f(n) = ©(n'°#r 2. As a result, case 2 holds and we infer that T'(n) = O(f(n)logn) =
O©(nlogn).

Example 3
e Consider the following recurrence relation:
1 if n <2
T(n) = -
() { 5T(n/2) +n? if n>2

e For this recurrence relation a = 5,b = 2 and f(n) = n? n'°®? = pl°e25 Note that
logy 5 > 2.32. Thus, for a value of ¢ = 0.3, f(n) = O(n'°®*~€). This means that
case 1 holds and hence T'(n) = ©(n'°#2°). This is what we got using the repeated
substitutions technique as well. Note that the choice of € is not unique. For example,

we could have chosen € to be 0.2.

Example 4

e Now consider the following recurrence relation:

1 if n <2
T(n) = -
(n) { 127(n/3) +n® if n > 2

e For this recurrence relation a = 12,b = 3 and f(n) = n®. nl°®?® = pl°&s12. Note that
log; 12 < 2.3. Thus, for a choice of € = 0.5, nl°%¢ = O (%) Also, a f(n/b) =
12(n/3)% = (12/27)n®. In other words, a f(n/b) < qf(n) for ¢ = (12/27) which is less
than one. As a result, case 3 holds. Therefore, we conclude that T'(n) = ©(n?).

Quick sort
o Input: X = ky, ko, ..., k,; Output: Sorted X.

e The quick sort algorithm employs divide-and-conquer and works as follows:

QuickSort(X)

if n = 1 then quit;

if n =2 then
{if k1 > ko then swap k; and ko; quit;}

Pick a pivot element k from X;

Partition X into X; and X, using k as follows:
Xi={qeX:qg<k}and Xo={qge€ X :q> k};

Recursively sort X; to get Yi;

Recursively sort X5 to get Ys;

Output Y7, k, Ys;

Analysis of quick sort

e Let T'(n) be the run time of quick sort on any input of size n.
e Given that partitioning takes n comparisons, we see that: T'(n) = T(|X1])+7T(| Xz|)+n.

e One of the worst cases happens when the input is already in sorted order. In this case,
whenever a recursive call is made, one of the two parts is empty.

e The recurrence relation for T'(n) corresponding to the above worst case is: T'(n) =
Thn—1)+n=Tnh-2)+(n—-1)4n=Tnh-3)+(n—-2)+(n—-1)4+n=---=

2

e Consider the possibility that whenever a recursive call is made, both X; and X, are
of the same size. In this case the recurrence relation for 7'(n) will become: T'(n) =
2T (%) +n. This solves to: T'(n) = O(nlogn) (using the Master theorem, for example).
This is one of the best cases.

e In the next lecture we will show that the expected run time of quick sort is O(nlogn).

