






















CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 7: September 20, 2016

Binary Search

• Input: A sorted sequence X = k1, k2, . . . , kn and another element x; Output: ‘yes’ if

x ∈ X and ‘no’ otherwise.

• The binary search algorithm works as follows:

BinarySearch(X, i, j, x)

if i = j then if x 6= ki then output ‘no’ and quit;

if x = k(i+j)/2 then output ‘yes’ and quit;

else if x < k(i+j)/2 then BinarySearch(X, i, (i + j)/2− 1, x);

else BinarySearch(X, (i + j)/2 + 1, j, x);

Merge sort

• Merge sort takes as input a sequence X = k1, k2, . . . , kn and outputs X in sorted order.

This is a divide-and-conquer algorithm with the following steps:

0.1) if n = 1 then output k1 and quit;

0.2) if n = 2 then { if k1 < k2 then output k1, k2 and quit;

else output k2, k1 and quit; }
1) Let X1 = k1, k2, . . . , kn/2 and X2 = kn/2+1, kn/2+2, . . . , kn;

2) Recursively sort X1 to get Y1; Recursively sort X2 to get Y2;

3) Merge Y1 and Y2;

• Merging two sorted sequences: Let A = a1, a2, . . . , an and B = b1, b2, . . . , bm be

two sorted sequences. The problem of merging A and B is that of producing a sorted

sequence C that has all the elements of A and B.

• We can merge two sorted sequences as follows: Compare the smallest element of A

with the smallest element of B, output the smaller of these two elements, and delete

this element from its sequence; Repeat this step until one of the sequences becomes

empty at which point output all the remaning elements from the other sequence.



• An example: Let A = 2, 5, 8, 12, 32, 45, 50 and B = 3, 4, 9, 10, 20, 22, 26, 27, 41. We

compare 2 from A and 3 from B and output 2. We delete 2 from A. Followed by this,

we compare 5 from A with 3 from B and output 3. Subsequently 3 is deleted from B;

and so on. When 41 is output from B, two elements 45, 50 will remain in A. These

two elemens are finally output.

• Note that the number of comparisons made by the above merging algorithm is no

more than n+m− 1. This is because whenever we make a comparison we output one

element. There are at most n + m elements that we have to output. Also, at some

point when one of the sequences becomes empty, the other sequence will have at least

one element (and we do not have to compare this element with any other element).

Run time analysis of

divide-and-conquer recursive algorithms

• For a generic divide-and-conquer recursive algorithm we let T (n) be the run time on

any input of size n. We then account for the run time of each step in the algorithm and

add up all of these run times to compute T (n). Some of the steps could be recursive

and hence their run times will be expressed using the funtion T (.) itself. Thus we will

express the function T (.) in terms of itself. Any such releation is called a Recurrence

Relation. We have to solve this recurrence relation to get the run time of the algorithm

(in a form that we can readily appreciate).

• The example of binary search: Let T (n) be the run time of binary search on any

input of size n. Then, we can express T (n) as follows: T (n) = T (n/2) + 1.

• The example of merge sort: Step 1 of merge sort does not need any comparisons.

In step 2 we have two recursive calls each on an input of size n/2. Thus the total time

spent for step 2 is 2T (n/2). Step 3 takes no more than n comparisons (as we have seen

before). Thus we end up with the following:

T (n) ≤ 2T (n/2) + n.

• There are many ways of solving a recurrence relation. We will discuss three such

techniques.

Solving a recurrence relation by repeated substitutions

• Consider the following recurrence relation:

T (n) =

{
c if n ≤ d

aT (n/b) + f(n) if n > d

where a > 0, b > 1, c ≥ 0, and d ≥ 0 are integer constants.



• Our goal is to eliminate the occurrence of the function T (.) from the right hand side

(RHS). In order to do so, we repeatedly substitute for T (n/b) using the definition of

T (n). Whenever we make a substitution, the value of the parameter for T (.) monoton-

ically decreases. This value will eventually become ≤ d (i.e., the base case) at which

point we would have eliminated the occrrence of the function T (.) from the RHS.

• We will illustrate this technique with examples.

• The example of merge sort: Consider the recurrence relation:

T (n) =

{
1 if n ≤ 2

2T (n/2) + n if n > 2

• We start with T (n) = T (n/2) + n and make a substitution for T (n/2):

T (n) = 2[2T (n/4) + n/2] + n = 22T (n/22) + 2n.

Making one more substitution we get:

T (n) = 22[2T (n/23] + n/22] + 2n = 23T (n/23) + 3n.

• We now see a general pattern. If we make (i− 1) substitutions (for any i > 1) we will

obtain:

T (n) = 2iT (n/2i) + in. (1)

• If (n/2i) = 2 (corresponding to the base case), we will be able to eliminate the occur-

rence of T (.) from the RHS.

• (n/2i) = 2 when n = 2i+1, i.e., when

i = (log n− 1). (2)

• Substituting equation 2 in equation 1, we notice:

T (n) =
n

2
T (2) + (log n− 1)n = n log n− n

2
= Θ(n log n).

• In summary, the solution to the recurrence relation is T (n) = Θ(n log n).

Another example

• Consider the following recurrence relation:

T (n) =

{
1 if n ≤ 2

5T (n/2) + n2 if n > 2



• We start with T (n) = 5T (n/2) + n2 and make a substitution for T (n/2):

T (n) = 5[5T (n/4) + (n/2)2] + n2 = 52T (n/22) + (5/4)n2 + n2.

Making one more substitution we get:

T (n) = 52[5T (n/23) + (n/22)2] + (5/4)n2 + n2 = 53T (n/23) + (5/4)2n2 + (5/4)n2 + n2.

• Making yet another substitution:

T (n) = 53[5T (n/24)+(n/23)2]+(5/4)2n2+(5/4)n2+n2 = 54T (n/24)+(5/4)3n2+(5/4)2n2+(5/4)n2+n2.

• We now see a general pattern. If we make (i− 1) substitutions (for any i > 1) we will

obtain:

T (n) = 5iT (n/2i)+[(5/4)i−1 +(5/4)i−2 + · · ·+(5/4)+1]n2 = 5iT (n/2i)+
(5/4)i − 1

(5/4)− 1
n2.

(3)

• (We have used the fact that 1 + r + r2 + · · ·+ rk = rk+1−1
r−1

for any r 6= 1). If (n/2i) = 2

(corresponding to the base case), we will be able to eliminate the occurrence of T (.)

from the RHS.

• (n/2i) = 2 when n = 2i+1, i.e., when

i = (log n− 1). (4)

• Substituting equation 4 in equation 3, we notice:

T (n) = 5logn−1T (2) + 4[(5/4)logn−1 − 1]n2 =
1

5
nlog 5 +

[
16

5
(5/4)logn − 4

]
n2

=
1

5
nlog 5 +

16

5
5logn − 4n2 =

1

5
nlog 5 +

16

5
nlog 5 − 4n2 = Θ(nlog 5).

• (Here we have used the following facts: 4logn = n2 and more generally, alogb n = nlogb a).

In summary, the solution to the recurrence relation is T (n) = Θ(nlog 5).


