

i "-"P ’

N
3%

) P Aas oney

CSE 3500 Algorithms and Complexity — Fall 2016
Lecture 6: September 15, 2016

In the last lecure we completed our discussion on heaps and heap sort. We also introduced
2-3 trees and saw how to perform a search operation in a 2-3 tree.

2-3 trees

e A 2-3 tree is a tree with the following propoerties: 1) Each non leaf has at least 2 and
at most 3 children; 2) All the leaves are at the same level; 3) Each leaf stores a key;
4) The keys in the leaves are in sorted order; and 5) Each non leaf = stores two keys
H,(z) and Hs(z), where H;(x) is the largest key in the first subtree of x and Hy(x) is
the largest key in the second subtree of x.

o Let T be a 2-3 tree of height h with n leaves. The maximum number of leaves in T is
3"~! and the least number of leaves in T is 2"~!. Thus it follows that (log,n + 1) >
h > (logsn + 1) and that h = O(logn).

Searching in a 2-3 tree

e Let x be the key searched for.

N = root;
repeat
if N is a leaf then
if x equals the key of N then output ‘yes’ else output ‘no’;
quit;
if v < H;(N) then N = N, else
if v > Hi(N) and = < Hy(N) then N = N, else
if N has a third child N; then N = Nj else
{ output ‘no’ and quit};
forever

e The above algorithm takes O(logn) time since we spend O(1) time per level of the
tree.

Inserting into a 2-3 tree

Let x be the key to be inserted into a 2-3 tree T'. Let r be the root of T. Create a new
node X and store x in it;

If T is empty, then X is the new tree;
If T is a single node, then create a new root with » and X as children;
Search for x in T'. Let p be the node such that x should be a child of p;

If p has currently two children then
insert Y as an appropriate child of p;
Adjust the H; and H, values of the ancestors of Y as needed and quit;

The remaining case is when p has three children. In this case insert Y as an appropriate
child of p. p now has 4 children. Replace p with two nodes p; and p, and assign two
children for each of them. If p was the root of the tree, then create a new root r with
p1 and ps as children. If p was not the root, then, set the parent of both p; and ps to
be the parent of p (before deletion). Now the parent of p; has one more child. Deal
with this problem recursively.

The above algorithm also takes O(logn) time since the search takes O(logn) time and
followed by this we spend O(1) time per level.

Deleting from a 2-3 tree

Let x be the key to be deleted from a 2-3 tree T'. Search for z in the tree. If x is not
in the tree then output ‘error’ and quit else let X be the node that has the key x and
let p be the parent of X;

If T is a single node X then delete this node and the tree becomes empty;

If T has a root and two leaves (X being one them) as children then delete X and the
root. Now the tree becomes a single node;

If p currently has three children, then delete X, adjust the H; and H, values of p and
its ancestors as needed, and quit;

The remaining case is when p has only two children.

Check if p has a sibling, either to the left or right, with three children. If there is
such a sibling s, let it be to the left. (The case of a right sibling can be handled in
exactly the same manner). Make the right most child of s as the first child of p, make
adjustments to the H; and Hs values of nodes as needed (note that we only have to

consider the ancestors of p), and quit;

If p does not have such a sibling, delete X from p and donate the only remaining
child of p to a sibling of p. Now the parent g of p has one less child. Deal with this
problem recursively starting from g.

e In the above algorithm also, we spend O(1) time per level of the tree and hence the
total time is O(logn).

e Theorem: A dictionary can be implemented such that each operation takes O(logn)
time. O.

e Note that a 2-3 tree can also used to realize a priority queue.

Algorithms Design: Divide-and-conquer

e Let m be any problem with |7| = n. To solve 7 using divide-and-conquer the following
steps are involved:

1) Generate k subproblems form 7 (for some k£ > 1).
Let these subproblems be w1, w9, ..., mg;
2) for i =1 to k do
Recursively (or otherwise) solve m;
3) Combine the solutions obtained in step 2 to create a solution for 7.

e A classical example of divide-and-conquer is binary search. For this problem the input
are a sorted sequence X = ki, ko,...,k, and another element x. The problem is to
check if x € X.

