

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 6: September 15, 2016

In the last lecure we completed our discussion on heaps and heap sort. We also introduced

2-3 trees and saw how to perform a search operation in a 2-3 tree.

2-3 trees

• A 2-3 tree is a tree with the following propoerties: 1) Each non leaf has at least 2 and

at most 3 children; 2) All the leaves are at the same level; 3) Each leaf stores a key;

4) The keys in the leaves are in sorted order; and 5) Each non leaf x stores two keys

H1(x) and H2(x), where H1(x) is the largest key in the first subtree of x and H2(x) is

the largest key in the second subtree of x.

• Let T be a 2-3 tree of height h with n leaves. The maximum number of leaves in T is

3h−1 and the least number of leaves in T is 2h−1. Thus it follows that (log2 n + 1) ≥
h ≥ (log3 n+ 1) and that h = Θ(log n).

Searching in a 2-3 tree

• Let x be the key searched for.

N = root;

repeat

if N is a leaf then

if x equals the key of N then output ‘yes’ else output ‘no’;

quit;

if x ≤ H1(N) then N = N1 else

if x > H1(N) and x ≤ H2(N) then N = N2 else

if N has a third child N3 then N = N3 else

{ output ‘no’ and quit};
forever

• The above algorithm takes O(log n) time since we spend O(1) time per level of the

tree.

Inserting into a 2-3 tree

• Let x be the key to be inserted into a 2-3 tree T . Let r be the root of T . Create a new

node X and store x in it;

• If T is empty, then X is the new tree;

• If T is a single node, then create a new root with r and X as children;

• Search for x in T . Let p be the node such that x should be a child of p;

• If p has currently two children then

insert Y as an appropriate child of p;

Adjust the H1 and H2 values of the ancestors of Y as needed and quit;

• The remaining case is when p has three children. In this case insert Y as an appropriate

child of p. p now has 4 children. Replace p with two nodes p1 and p2 and assign two

children for each of them. If p was the root of the tree, then create a new root r with

p1 and p2 as children. If p was not the root, then, set the parent of both p1 and p2 to

be the parent of p (before deletion). Now the parent of p1 has one more child. Deal

with this problem recursively.

• The above algorithm also takes O(log n) time since the search takes O(log n) time and

followed by this we spend O(1) time per level.

Deleting from a 2-3 tree

• Let x be the key to be deleted from a 2-3 tree T . Search for x in the tree. If x is not

in the tree then output ‘error’ and quit else let X be the node that has the key x and

let p be the parent of X;

• If T is a single node X then delete this node and the tree becomes empty;

• If T has a root and two leaves (X being one them) as children then delete X and the

root. Now the tree becomes a single node;

• If p currently has three children, then delete X, adjust the H1 and H2 values of p and

its ancestors as needed, and quit;

• The remaining case is when p has only two children.

Check if p has a sibling, either to the left or right, with three children. If there is

such a sibling s, let it be to the left. (The case of a right sibling can be handled in

exactly the same manner). Make the right most child of s as the first child of p, make

adjustments to the H1 and H2 values of nodes as needed (note that we only have to

consider the ancestors of p), and quit;

If p does not have such a sibling, delete X from p and donate the only remaining

child of p to a sibling of p. Now the parent g of p has one less child. Deal with this

problem recursively starting from g.

• In the above algorithm also, we spend O(1) time per level of the tree and hence the

total time is O(log n).

• Theorem: A dictionary can be implemented such that each operation takes O(log n)

time. 2.

• Note that a 2-3 tree can also used to realize a priority queue.

Algorithms Design: Divide-and-conquer

• Let π be any problem with |π| = n. To solve π using divide-and-conquer the following

steps are involved:

1) Generate k subproblems form π (for some k ≥ 1).

Let these subproblems be π1, π2, . . . , πk;

2) for i = 1 to k do

Recursively (or otherwise) solve πi;

3) Combine the solutions obtained in step 2 to create a solution for π.

• A classical example of divide-and-conquer is binary search. For this problem the input

are a sorted sequence X = k1, k2, . . . , kn and another element x. The problem is to

check if x ∈ X.

