

Serackag (N A 23 Ree;

e e

We ule U, aud e vQues g
8ld¢hJ2b4£A. IF we Seanch v X
e Cwtbare ¥ L, e (st),
2% X L Lﬁﬁvﬁf) we ywave 5 R

Hast Udd @ Be ot 9 fanmed
Nacion §eely.

< 286K35
WE move o the

Sy i Fromthe
%E_{:ﬁ\p = ;
o o1 |
TI\L}‘ LJLT(\ @ TERMW | Al ATES
N The (ear WH 3¢

| 2 6 AT N THe TRes \

CSE 3500 Algorithms and Complexity — Fall 2016
Lecture 5: September 13, 2016

In the last lecure we started our discussion on data structures. Trees and related facts and
definitions were presented. A heap was introduced. We showed how to perform Fin_Min (in
O(1) time) and Insert (in O(logn) time) operations.

Heapify and Delete

e To process the Delete_Min operation, we define another operation called Heapify (A, i,n),
where 7 is any node in a complete binary tree stored as A[l : n].

e Heapify is defined for any node ¢ in a complete binary tree where the subtree rooted
at the node 2i (i.e., the left child of i) is a heap and the subtree rooted at the node
2i 41 is also a heap. When the execution of Heapify(A,i,n) is completed, the subtree
rooted at the node ¢ will also become a heap.

e Here is an algorithm that implements Heapify(A,i,n):

repeat
if Afi] < A[2d] and A[i] < A[2i+ 1] or i is a leaf then quit;
else
Let j = 2i if A[2i] < A[20 + 1] else let j = 2i + 1;
Swap A[i] with A[j]; i = J;
forever

In the above algorithm the special case when the node 27+ 1 is missing can be handled
appropriately. In this case in line 2 we only have to compare A[i] and A[27] and in line
4, we set 7 = 21.

e Note that Heapify(A,i,n) takes O(logn) time since we spend only O(1) time per level
of the tree in the worst case.

e The Delete_Min() operation can be handled as:

All] = Aln];
Heapify(A,1,n — 1)

e The run time for Delete_Min() is also O(logn).

Sorting

e We can sort n given elements using a priority queue as follows. Let X = ky, ko, ..., k,
be the input.

Start with an empty priority queue Q;
for =1 ton do

Insert k; into Q;
for s =1 ton do

Output Delete_Min();

e Each insert and each delete operation takes O(logn) time. We perform a total of n
inserts and n deletes. Thus the total run time of this sorting algorithm is O(nlogn).

e The above algorithm is called heap sort and it is one of the asymptotically optimal
algorithms known for sorting.

e Fact: If we are given a sequence X = ky, ko, ..., k,, we can build a heap consisting of
these elements in O(n) time. Here is an algorithm:

for:=1ton do
Alt] = ky;

for i = |[n/2| downto 1 do
Heapify(A,i,n);

e We can show that the above algorithm runs in O(n) time as follows. We call Heapify
on every nonleaf in the complete binary tree. When we call Heapify on a node in level
i of the tree, the time spent is O(h — i) where h is the height of the tree. Note that
2" = O(n).
There are 27! nodes in level i of the tree (for 1 < i < h) and on each such node we
spend O(h — i) time. Thus the total time spent in forming the heap is proportional to
hf?*(h) =22 42h 3 24 2h 4 34 2h—2 [1 T A AL N ok
—7) = e e — — JE— — o e - -
P 2 22 23 2i-1 20
1)
Note that the ratio between two successive terms in the above series is %% This ratio
is < 2, for all ¢ > 3. Thus the sum of the series (within parantheses) of Equation 1 is

RGN AT R R PR

3

3
<2+

Substituting this in Equation 1, the total time for heap formation is < 22 (%) =
©(n).0

An optimal dictionary implementation

e There are numerous optimal implementations of a dictionary using such structures as
red-black trees, AVL trees, a* trees, 2-3 trees, etc.

e Each of the anove stcutures have a height of O(logn) and there exist algorithms that
perform the operations of interest in O(h) time, h being the height of the tree.

e Any tree whose height is ©(logn) can be called a balanced tree.

e We use 2-3 trees in our discussion.

2-3 trees

e A 2-3 tree is a tree with the following propoerties: 1) Each non leaf has at least 2 and
at most 3 children; 2) All the leaves are at the same level; 3) Each leaf stores a key;
4) The keys in the leaves are in sorted order; and 5) Each non leaf x stores two keys
Hi(z) and Hs(z), where H;(x) is the largest key in the first subtree of x and Hy(x) is
the largest key in the second subtree of z.

Searching in a 2-3 tree

e Let x be the key searched for.

N = root;
repeat
if NV is a leaf then
if x equals the key of N then output ‘yes’ else output ‘no’;
quit;
if r < Hi(N) then N = N; else
if > Hi(N) and x < Hy(N) then N = N, else
if N has a third child N3 then N = N3 else
{ output ‘no’ and quit};
forever

