


















CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 5: September 13, 2016

In the last lecure we started our discussion on data structures. Trees and related facts and

definitions were presented. A heap was introduced. We showed how to perform Fin Min (in

O(1) time) and Insert (in O(log n) time) operations.

Heapify and Delete

• To process the Delete Min operation, we define another operation called Heapify(A, i, n),

where i is any node in a complete binary tree stored as A[1 : n].

• Heapify is defined for any node i in a complete binary tree where the subtree rooted

at the node 2i (i.e., the left child of i) is a heap and the subtree rooted at the node

2i+ 1 is also a heap. When the execution of Heapify(A, i, n) is completed, the subtree

rooted at the node i will also become a heap.

• Here is an algorithm that implements Heapify(A, i, n):

repeat

if A[i] < A[2i] and A[i] < A[2i + 1] or i is a leaf then quit;

else

Let j = 2i if A[2i] < A[2i + 1] else let j = 2i + 1;

Swap A[i] with A[j]; i = j;

forever

In the above algorithm the special case when the node 2i+1 is missing can be handled

appropriately. In this case in line 2 we only have to compare A[i] and A[2i] and in line

4, we set j = 2i.

• Note that Heapify(A, i, n) takes O(log n) time since we spend only O(1) time per level

of the tree in the worst case.

• The Delete Min() operation can be handled as:

A[1] = A[n];

Heapify(A, 1, n− 1)

• The run time for Delete Min() is also O(log n).



Sorting

• We can sort n given elements using a priority queue as follows. Let X = k1, k2, . . . , kn
be the input.

Start with an empty priority queue Q;

for i = 1 to n do

Insert ki into Q;

for i = 1 to n do

Output Delete Min();

• Each insert and each delete operation takes O(log n) time. We perform a total of n

inserts and n deletes. Thus the total run time of this sorting algorithm is O(n log n).

• The above algorithm is called heap sort and it is one of the asymptotically optimal

algorithms known for sorting.

• Fact: If we are given a sequence X = k1, k2, . . . , kn, we can build a heap consisting of

these elements in O(n) time. Here is an algorithm:

for i = 1 to n do

A[i] = ki;

for i = bn/2c downto 1 do

Heapify(A, i, n);

• We can show that the above algorithm runs in O(n) time as follows. We call Heapify

on every nonleaf in the complete binary tree. When we call Heapify on a node in level

i of the tree, the time spent is O(h − i) where h is the height of the tree. Note that

2h = Θ(n).

There are 2i−1 nodes in level i of the tree (for 1 ≤ i < h) and on each such node we

spend O(h− i) time. Thus the total time spent in forming the heap is proportional to

h−1∑
i=1

2i−1(h−i) = 2h−2+2h−3 2+2h−4 3+· · · = 2h−2
[
1 +

2

2
+

3

22
+

4

23
+ · · · i

2i−1
+

i + 1

2i
+ · · ·

]
.

(1)

Note that the ratio between two successive terms in the above series is i+1
i

1
2
. This ratio

is ≤ 2
3
, for all i ≥ 3. Thus the sum of the series (within parantheses) of Equation 1 is

≤ 2 +
3

22

[
1 +

(
2

3

)
+
(

2

3

)2

+
(

2

3

)3

+ · · ·
]

= 2 +
3

4

[
1

1− 2
3

]
= 2 +

9

4
=

17

4
.

Substituting this in Equation 1, the total time for heap formation is ≤ 2h−2
(
17
4

)
=

Θ(n).2



An optimal dictionary implementation

• There are numerous optimal implementations of a dictionary using such structures as

red-black trees, AVL trees, a* trees, 2-3 trees, etc.

• Each of the anove stcutures have a height of O(log n) and there exist algorithms that

perform the operations of interest in O(h) time, h being the height of the tree.

• Any tree whose height is Θ(log n) can be called a balanced tree.

• We use 2-3 trees in our discussion.

2-3 trees

• A 2-3 tree is a tree with the following propoerties: 1) Each non leaf has at least 2 and

at most 3 children; 2) All the leaves are at the same level; 3) Each leaf stores a key;

4) The keys in the leaves are in sorted order; and 5) Each non leaf x stores two keys

H1(x) and H2(x), where H1(x) is the largest key in the first subtree of x and H2(x) is

the largest key in the second subtree of x.

Searching in a 2-3 tree

• Let x be the key searched for.

N = root;

repeat

if N is a leaf then

if x equals the key of N then output ‘yes’ else output ‘no’;

quit;

if x ≤ H1(N) then N = N1 else

if x > H1(N) and x ≤ H2(N) then N = N2 else

if N has a third child N3 then N = N3 else

{ output ‘no’ and quit};
forever




